EUROPA : A Generic Framework for Developing

Spoken Dialogue Systems

Munehiko SASAJIMA, Takehide YANO, and Yasuyuki KONO.
Kansai Rescarch Center, TOSHIBA Corporation
8-6-26 Motoyama Minami, Higashi-Nada, Kobe 658-0015, JAPAN
{sasa,yano kono}@krl toshiba.co.jp

ABSTRACT

Voice interfaces are not popular since they are neither
uscful nor user-friendly for non-specialist users. In this
paper, EUROPA, a new framework for developing
spoken dialogue systems, is introduced. In developing
EUROPA, the authors focused on three points : (1)
acceplance of spoken language, (2) portability in terms
of domain and task, and (3) practical performance of the
applied system. The framework is applied to
prototyping a car ravigation system called MINOS.
MINOS is built on a portable PC, can proccss over 700
words of rccognition vocabulary, and is able to respond
1o a user's question within a few seconds.

Keywords: spoken dialogue system, voice interface,
car navigation system

1. INTRODUCTION

Recently, some systems such as car navigation systems
or information desk systems are equipped with a voice
interface. However. voicc interfaces are not popular
since they arc neither useful nor user-friendly for non-
specialist users. To solve this problem, this paper
focuses on the following three points.

First, the voice interface should accept spoken language.
Application of the voice interface is effective especially
when the uscr is not able to usc his/her hands because of
another task, for example, driving a car, cooking in a
kitchen. or operating a power plant. It would be difficult
for such uscrs to communicate their intention in written
language, which involves many grammatical
constraints.

Second, it is very important for voice interfaces to be
independent of task and domain as much as possible. In
developing voice interfaces, the nced for modifications,
such as enhancement of domain knowledge or change
of task, frequenty arises. The task- and domain-
independent framework reduces the cost of feeding
back the requests to the interface.

Lastly, the system with the voice interface should
answer users' questions within a short time. Some tasks

such as car navigation or cooking requirec prompt
answers. Slow systems are not useful.

The authors adopted three approaches and integrated
them into a framework called EUROPA, which stands
for “Environment for building Utterance RecOgnizable
PAckages.” To accept spoken language, the voice
recognition module of the spoken dialogue system
based on EUROPA does keyword-spotting. A sequence
of spotted keywords represents a sentence as well as a
user’s intention.

Next, to make dialoguc systems task- and domain-
independent, EUROPA separates modulcs/data into the
domain-dependent modules/data and domain-
independent modules/data. To run a dialogue, the
dialogue system must control a set of modules which
belong to one of the two groups. Our framework copes
with this point by adopting an interpreter for such codes
that manage dialogue.

Lastly, to gain enough speed for the response, we have
developed a BTH parser{1] for parsing keyword-lattices.
Also the script for managing problem solving is
compiled beforchand into another form to be interpreted
faster.

EUROPA is applied to prototyping a car navigation
system. The system answers two types of questions.
One is the iocation of something such as a facility, a
service-area, a parking lot or a shop. The other is a
duration between two locations. All neccssary modules
are built on one notcbook PC(Pentium 1I 266MHz),
which accepts more than 1 million patterns of sentences
and in almost all cases answers within 2 seconds.

2. THE EUROPA FRAMEWORK

2.1 Overview

We have designed EUROPA as a generic framework for
spoken dialogue systems. Figure 1 shows the overall
process of man-machine dialogue in EUROPA.

The word-spotting engine recognizes the user’s utter-
ance and it generates a keyword lattice as a rccognition
result. The obtained lattice is parsed by the BTH parser

ESCA, Eurospeech99. Budapest, Hungary. ISSN 1018-4074, Page 1163

R-3

Whart is the last
ravice sa -
before the ext? E gﬂ.,—.-u.
Word-spoxting ‘w Parsing l‘ﬂf_
cnpne Wordlagice | i RTtH parser)
Analysis of
mecaning and
obd
r G tion of

output sentencs Manng

\/ o
ara’s question

and a3 mrwa

Figure 1: Dialogue process

to generate a set of possible keyword sequences, each of
which is acceptable by the given grammar. The set is
analyzed and solved in terms of meaning and the most

plausible keyword-sequence in the set is selected. Fi- .

nally, the reply to the user's question is played back by
synthesized voice.

2.2 BTH Parser

To accept spoken language, our voice recognition mod-
ule does keyword-spotting and outputs a keyword lat-
tice. Parsing the keyword lattice, the parser extracts
plausible word-sequences. Each of the word-sequences
represents the user's intention. In the case of spoken
Japanese, misuse or loss of particles often occurs. Key-
word spotting does not deal with them, which simplifies
acceptable grammar rules. This characteristic also
solves the problems of dealing with unnccessary terms
such as “aah” or “well.” Just by excluding them from
the keyword set, we can accept sentences with these
words.

Furthermore, change of word order which also occurs in
Japanese spoken dialogue can be easily dealt with. The
BTH parser is employed for cfficiently parsing the
keyword lattice, which is obtained by keyword-spotting,
and it is transformed into a set of possible keyword-
sequences. The details of the BTH parser are described
in [1].

In the case of the task, it is common for over 100 spot-
ted words to bc notified from the recognition engine,
and consequently over 1 million possible word se-
quences can be generated by unfolding the correspond-
ing lattice even if word-class bi-gram is applied to the
lattice. BTH, however, is able to parse such a large lat-
tice within a practical time.

2.3 USHI:Script-based method for Dialogue
management
Obtaining the set of possible keyword-sequences from

the BTH parser, the dialogue controlling module proc-
esses it to generate a reply. The overall configuration of

the module is depicted in Figure 2.
2.3.1 Dialogue management process
Firstly, it transforms the given set into a set of repre-
sentations of input intention, each of which corresponds
to a word-sequence candidate, by employing Intention
Translator.)
Then it resolves a user's question by referring to the
knowledge base and generates meaning representation
of the query that corresponds to the most plausible
word-sequence and its answer. Obtaining the informa-
tion, the Response Generator generates responding
sentences. The problem-solving process is based on
unification of feature structures.
2.3.2 Enhancement of portability
Portability is required for the framework for building a
spoken dialogue system. In the prototyping and testing
cycle, the need for modifications, such as enhancement
of domain knowledge or change of task frequently
arises, even if the domain and the task do not change.
As shown in Figure 2, EUROPA separates modules into
two groups. One consists of the domain dependent
modules/data such as a word dictionary, grammar rules,
rules for translating user intcntions, rules for generating
scntences as an answer to the user input, and domain-
specific problem solvers, such as Place-expression Re-
solver and Route Resolver. The other consists of do-
main-independent modules/data such as a lattice parser,
an interpreter for translating user intentions, and an in-
terpreter for generating answer sentences.
2.3.3 USHI specification
To run a dialogue, the dialogue system must control a
sct of modulcs, which belong to onc of the two groups.
For example, a car navigation task that solves a location
specified by a user utterance, requires not only a generic
parser but also a domain-specific problem solver which
resolves the location the user intended. Embedding such
control codes including domain-specific parts reduces
portability of the framework.
EUROPA solves this problem by adopting an interpre-
ter for such codes that manage dialogue. We call this
interpreter the “USHI Interpreter” which stands for
“Unification-based Script Handling Instruction set In-
terpreter.” A system developer describes the process of
meaning analysis, problem-solving, and response gen-
cration in an USHI script, and the module interprets the
script.
USHI script language is a Pascal-like language and has
the following three features: (1) Subset of statements for
expressing selection and looping, (2) Unary and binary
operators for calculation and comparison, and (3) Abil-
ity to invoke a function defined in the other part of the
script or a system embedded one written by C++. For
dealing with feature structures and knowledge base, the
script has two more features.

(1) Unification between feature structures.

(2) Access to the knowledge base.

Page 1164

N i

%

B

LY

USHI Interpret USHI Coce:
m e (itermadiste sode)
Contral
/-‘ th Knowledge-ba Response
Translator Marager Generator
Domain independent
(IR A Y R R L R L I RN L YA R) N Y Y NN R Y RN N)
) Domain dependent RN o

{ntention . Pao- | Route | Dutput-sentenc
=

Dialogue Controlling Module

USHI:Unification-based Seript Handling Instruction set

Figure 2: Dialogue controlling modules

Furthermore, to gain cnough speed for the response, the
USHI script for managing problem solving is compiled
beforehand into another form to be interpreted faster, as
shown in Figure 2.

2.3.4 Dialogue management example

For example, a car navigation task which solves the
user's query about the location of an interchange is con-
trolled by the USHI interpreter and an USHI script whi-
ch includes a procedure consisting of two steps.

Stepl: If the user’s intention is to seek for a place that
satisfies some conditions, then call a function which re-
solves the user’s expression about a place.

Step2: If the user’s expression is resolved, then call the
response gencrator to generate an answer sentence whi-
ch includes the user's original expression and the an-
swer. :

When a word-sequence “Where is the next inter-
change?” is input, the Intention Translator translates it
into a data structure called “user intention.” A user in-
tention is a form of typed feature structure. Translator is
a domain independent module and has a knowledge
base which is initialized by Intention templates that
specifics mapping rules among utterance pattemns and
the user intentions. The utterance of this example is
translated into the following structure '. Letters lcfi-
hand side of the sign of aggregation “(* means the type
symbol, left-hand side of the “:” means a feature, and
the right-hand side of the “:” means the value of the
feature.

! The structure implemented on MINOS has more features,
and unbound features are not printed here.

_ UserIntention(Intent: AskNameOfPlace
Expression-Of-Place:
Place-expression(
ClassExpression:Interchange,
RelativeOrderExpression:Next))

Next, the USHI interpreter interprets the USHI script
Stepl, and calls the Place-expression resolver with an
argument which specifies the condition of the location.

Place-expression(
ClassExpression:Interchange,
RelativeOrderExpression:Next)

The Place-expression resolver utilizes the Knowledge-

base Manager and accesses the route data set by the user,
data about geographical features, location of objects

such as shops or gas-stations, and so on. '
If the Place-expression is resolved, the USHI interpreter

proceeds to the Step2. For example, if the resolved an-

swer is “Suita Interchange,” then an answer sentence

“The next interchange is Suita Interchange.” is gener-

ated. The sentence in the form of text is input to the

TTS module, which is a former version of the TOS

Drive TTS[2], and output.

2.4 MINOS: an application of EUROPA

EUROPA is applied to prototyping a car navigation
system, called MINOS. Figure 3 shows a view of the
system. A sample screen copy of MINOS is shown in
Figure 4.

The system answers two types of question. One is the
location of something such as a facility, a service-area,

Page 1165

Figure 3: View of MINOS

a parking lot or a shop. The other is the duration be-
tween two locations. All modules including the voice
rccognition, the dialogue control, and the text to speech
engine are built on one notebook PC (Pentium II
266MHz), which acccpts more than 1 million pattcrns
of sentences and in almost all cascs answers within 2
seconds.

MINOS is able to rcspond to queries with respect to lo-
cations made by a uscr while driving a car. Modules in
MINOS run collaboratively, communicating with each
other via socket-bascd messaging. As shown in Figure 4,
the application module of MINOS has a map-based ap-
pcarance, which is based on ProAtlas, a map software
developed by ALPS Mapping Co., Ltd. It simulates car
driving by replaying prcrecorded position data obtained
from the Global Positioning Satcllite (GPS) system.

The application module simulates driving a car and
continuously notifics the dialogue module of the simu-
lated current position at rcgular intervals of time. When
a user asks a question in Japancse, e.g., “Deguchi-no-
mae-no-saigo-no-service-arca-ha-doko? (Where is the
last service area before the exit?)”, the word-spotting
cngine recognizes the utterance and notifies the dia-
logue controlling module of a keyword latticc. MINOS
can process over 700 words of recognition vocabulary.
Next, MINOS analyzes the keyword lattice by employ-
ing (he BTH parser and obtains a set of candidate word-
scquences, referring to the over 1 million sentence pat-
terns. The word-sequences are sorted in the descending
order of the initial score of each candidate, which is cal-
culated from phonetic scorcs of the candidate’s words.
Each word-sequence candidate is converted into a user's
intention in the forn of a typed feature structure, and is
resolved by using current position information and the
knowledge basc. The knowledge base is a semantic
network that contains all the knowledge required to sol-
ve questions about locations on the displayed map.

The scorc of cach candidate is revised in terms of pho-
netic value and meaning, which is the cost of problem
solving, and the list of the candidatcs is reordered. As a

Figure 4: A screen copy of MINOS

result, the candidate with the best score is selccted and
the text of the answer corresponding to the question is
generated, e.g., “Amagasaki Service Arca is the last
service area before Nishinomiya Interchange™ and the
dialogue controlling module notifies the TTS engine of
it.

One more function of EUROPA is asking back to the
user when the score of the sentence is lower than a

given threshold, such as “Did you ask about a rcstaurant
Jjust before the destination?”

3. CONCLUSION

We have devcloped EUROPA, a gencric framework for
spoken dialoguc systems. Aiming at enhancement of the
scalc of the task and portability in termns of task and
domain, it employs an cfficicnt keyword lattice_parser,
BTH[1] and script-based mcthod for dialogue manage-
ment, USHI. EUROPA was applied to prototyping a
PC-based spontancous speech interface for car naviga-
tion tasks, MINOS.

The result shows promise with respect to implementa-
tion of the function of a spontancous speech interface in
next-gencration car navigation systems cquipped with
RISC MPUs of about 70MIPS.

Currently, MINOS is a question-answer system, and
future work will consider about more interactive dia-
logue and the resolution of the reference such as usage
of pronouns.

4. REFERENCES

[1] Kono, Y., Yano, T., and Sasajima, M.(1998), BTH:
An Efficient Parsing Algorithm for Word-Spotting.
Proceedings of ICSLP *98, pp. 2067-2070.

[2] Akamine, M. and Kagoshima, T.(1998), Analytic
Generation of Synthesis Units by Closed Loop
Training for Totally Spcaker Driven Text to Speech
System (TOS Drive TTS). Proceedings of ICSLP
‘98, pp. 1927-1930.

Page 1166

