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Abstract

This paper presents a new robot navigation system that
can operate on a sketch floor map provided by a user.
This sketch map is similar to floor plans as shown at the
entrance of buildings, which does not contain accurate
metric information and details such as obstacles. The
system enables a user to give navigational instructions
to a robot by interactively providing a floor map and
pointing out goal positions on the map. Since metric
information is unavailable, navigation is done using an
augmented topological map which described the struc-
ture of the corridors extracted from a given floor map.
Multiple hypotheses of the robot’s location are main-
tained and updated during navigation in order to cope
with sensor aliasing and landmark-matching failures due
to factors such as unknown obstacles inside the corri-
dors.

1 Introduction

In recent years, personal robots have received a grow-
ing interest from the public, and many robot platforms
like PaPeRo[1] and Robovie[2] are becoming available.
These robots are expected to interact with users and
carry out specified tasks in unmodified environments.
Therefore, it is important that they provide intuitive
interface to the users, and can process information the
users give them.

Navigation from one place to another is one of the
most basic tasks users require of their robots. To ac-
complish this, a robot will have to know how to get to
the goal from its current position. If the robot have a
prior knowledge about its environment, in other words,
if it has a map of the environment, it can try to fig-
ure out how to get to the goal given its current position
and goal position. Maps can be provided by the users;
however, human is not very good at producing accurate
and detailed maps. Therefore, the robots will have to
be able to deal with inaccuracies and lack of details that
comes with the maps provided by users.

In this paper, we propose a robot navigation system
that operates in corridor environments using an inac-
curate sketch floor map provided by human. This map
is similar to two-dimension floor plans usually found in
buildings. It does not require accurate metric and ge-
ometric information, and details about obstacles inside
the corridor can be omitted. This map is very easy to
created, for example, by using simple drawing programs.
With this system, the user can initiate a navigation task
intuitively by drawing a map and interactively pointing

out the robot’s current position and goal position on the
map.

One of the characteristics of the user-provided map
is its lack of accurate metric and geometric information,
thus, the navigation has to be done without them. In
our system, only the structure of the corridors is used
for navigation. An augmented topological map describ-
ing the structure of the corridors is extracted using a
Voronoi diagram of the sketch map. The robot then
uses the topological map during subsequent navigation.

Another characteristics of the user-provided map is
the omission of certain obstacles, such as pillars or furni-
ture, inside the corridors. This can cause failures when
the robot try to match features extracted from sensor
readings with features from the topological map. To
cope with this problem, multiple hypotheses of a robot
position are maintained during navigation, and their as-
sociated belief values are updated whenever a new fea-
ture is found. This also provides a good solution to sen-
sor aliasing and wrong observation of the environment
that can occur during navigation.

The paper is organized as followed. Related works re-
garding robot navigation is discussed in Section 2. After
an overview of the sketch map provided by the user and
its characteristics Section 3, an augmented topolocigal
map used to represent the environment and a method
for generating it from the sketch map is described in Sec-
tion 4. In Section 5, a navigation system architecture
with localization method based on Multiple Hypothesis
Tracking is described. Results of navigation experiments
in simulated environments are presented in Section 6.
Finally, a conclusion is given in Section 7.

2 Related Works

An example of systems that rely on user-provided map
for navigation is one proposed by Terabayashi, et al.[8].
The system takes a scanned image of a hand-written
map, which is a labeled graph representing the topology
of the corridor, as input. During navigation, localiza-
tion is carried out by matching nodes in the graph to
Voronoi vertices extracted from sensor readings, which
represents the topological structure of the environment,
using straightforward algorithm. Their localization pro-
cess is not designed to handle ambiguous situations that
are caused by the difference between the map and the
real environment. Furthermore, using a graph as input
severely limits the expressiveness of the map, making
it difficult to understand and limiting the possibility of
future extension.

Many modern systems use a landmark-based topo-
logical map[11] for navigation. Topological maps are
more efficient for path planning and do not depend on



geometrical accuracy. These systems usually rely on ac-
curate topological maps that are either learned directly
from sensor readings during exploration[13] or by de-
composition of previously learned grid-based map[14].
Many researches augment topological map with approx-
imate metric information or Markov models, which is
primarily used to resolve topological ambiguity. In our
case, this information is not available in the map pro-
vided by the user, so we have to rely on another mean
to resolve the ambiguity.

We considered using a technique based on Multiple
Hypothesis Tracking(MHT) to solve the ambiguity that
can arise during navigation. MHT is widely used to solve
global localization problems[9][10], in which a robot has
no knowledge of its initial position and has to deter-
mine its current position based on past observations of
the environment. In our case, instead of starting with
an empty hypothesis, we start with a highly reliable hy-
pothesis of robot starting point, which is provided by
user. On the other hand, the map involved in the pro-
cess is now ambiguous.

3 Sketch Floor Map

In this section, we describe a sketch floor map that is
used as input for the navigation system, and a method
to extract topological map from it for use in navigation.

3.1 Information on Sketch Floor Map
Our aim is to create a robot navigation system for in-
door corridor environments, therefore we define a sketch
floor map as an abstract map of the environment that
shows structural information of corridors in a building.
It is given to a robot as a bitmap image, with white
pixels denote passable terrain, and black pixels denote
wall or other obstacles that robot cannot pass through.
The map should models the existence and the connec-
tivity of corridors correctly, but accurate measurement
and geometric information, such as length of corridors
or exact shape of walls, are not necessary. Additionally,
the sketch map may contain information about rooms
that are attached to the corridors, in order to help user
visualize the building, but it is not strictly necessary.
This kind of map can be created easily with a simple
drawing tool. Figure 1 shows a sample map of first floor
of School of Information Science building at NAIST.

3.2 Characteristics of Sketch Floor Map
Although a sketch floor map is given as a bitmap image,
it cannot be used directly as a grid-based or metric map
for navigation because of the following restrictions.

• Scale is not uniform across the map. The
map can be partially deformed, so scale of the map
computed at runtime on one part of the map may
not apply to other parts. This makes navigation
with dead reckoning difficult.

• Geometrical details are not available. Details
such as exact shapes of the walls can be omitted
and shapes of intersections are usually inaccurate,
making it hard to match raw sensor readings with
the map.

• Obstacles are left out of the map. When
drawing a sketch map, users tend to omit details
about obstacles, such as pillars and furnitures, pre-
sented in the corridors. This not only makes raw

Figure 1: An Example of a Sketch Floor Map

sensor matching difficult, extra landmarks not ex-
pected by robots can make landmark-based match-
ing difficult too.

We address these problems by creating an augmented
topological map that represent the structure of the cor-
ridor as shown in the floor map and use it for naviga-
tion instead. During navigation, A localization method
based on Multiple Hypothesis Tracking (MHT) is used
to deal with ambiguity in landmark matching. We will
descibe the augmented topological map and its extrac-
tion process in more details in Section 4, while MHT-
based localization will be described in Section 5.

4 Augmented Topological Map

In this section, first, we describe a Voronoi diagram,
which is used as a tool to extracted the structure of the
corridor, and an augmented topological map, which is
used to represent the environment, then we outline a
process of generating the topological map.

4.1 Definition of Voronoi Diagram
Let P = p1, p2, . . . , pn be a set of points in the two-
dimensional Euclidean plane. P is called the generators.
Partition the plane by assigning every point in the plane
to its nearest point p ∈ P . All those points assigned to
pi form the Voronoi region V (pi), that is,

V (pi) = {x : |pi − x| ≤ |pj − x| ∀j �= i}. (1)

Note that some points do not have a unique nearest
neighbor. The set of all points that have more than one
nearest neighbor forms the Voronoi diagram V(P )[4]. A
Voronoi vertex is a point p ∈ V(P ) that has more than
2 nearest neighbors and a Voronoi edge is a set of points
that forms a boundary between Voronoi regions.

The concept of Voronoi Diagram is utilized in many
robot navigation systems, in many different applica-
tions, such as path planning[5], environmental modeling[6],
exploration[7] and localization[8].

Voronoi diagram generated from the floor map rep-
resent its structure in the sense that Voronoi vertices are
formed in the middle of the corridors, and vertices with



more than 2 neighbors indicate intersections and cor-
ners. This facilitates the generation of topological map
that use intersections and corners as landmarks. The
type of structural features suitable as a navigation land-
marks are in fact largely depended upon the available
sensors. Our robot is equipped with a range sensor so it
is relatively easy to detect intersections and corners.

An example of the Voronoi diagram of a simple floor
map is shown in Figure 2.

4.2 Augmented Topological Map
A traditional topological map is a graph that repre-
sents connectivity between landmarks, without contain-
ing any metric or geometrical information. In this work,
the map is represented as a topological map, with nodes
correspond to such landmarks as intersections, corners
or a dead-ends in the corridor, and arcs correspond to
adjacency between them. Each node in the map is aug-
mented with a circular queue that stores a label of each
node adjacent to it in counterclockwise order. In order
to increase recognition capability, each node contains an
attribute about its geometric property as follows:

• +-intersection is a node connected with 4 arcs
that extends approximately perpendicularly to
each other.

• T-intersection is a node that is connected with 3
arcs, with two of them perpendicular to the other.

• Endpoint is a node that where the Voronoi dia-
gram ends at a wall.

• Dead-end is a node that has 3 neighbors, and two
of them are Endpoints.

• Corner is a node that has 3 neighbors, and one of
them is an Endpoint.

• Generic node is a node that is not any of the
above

+-intersection and T-intersection contain additional
attributes about which neighbors are on arcs that are
perpendicular. Corners and Dead-ends contain addi-
tional attributes about which neighbors of them is on
the walls.

Creating Augmented Topological Map
First, a set of points G are generate from a given sketch
map by taking a sample of black pixels in the map at a
regular interval. These sample points are used as gen-
erators for Voronoi diagram. In our implementation,
the Voronoi diagram is generated by creating Delau-
nay triangulation of the generators. A set of 3 points
P = {p1, p2, p3} ⊂ G form a Delaunay triangle if and
only if there is a point c in the plane equidistant to each
point in P and no other points in G is nearer to c. In
other words, c is the center of the circumcircle that pass
through p1, p2, and p3 and has no other points in G in-
side it. Therefore, c is on a Voronoi edge of Voronoi
regions generated by P . We consider two Delaunay tri-
angles that share a side and have no points in G between
them adjacent. By connecting centers of each circumcir-
cle of all adjacent Delaunay triangles, a Voronoi diagram
is created.

For each Voronoi vertex that has more than two
neighbors, a topological node is created with a label.
The vertices that has only two members becomes arcs
between nodes. The labels of nodes that are connected
to it by Voronoi diagram are add to the queue attached,
in counterclockwise order. Average direction of each arc

is calculated. Nodes connected by a very short arc are
combined together. Lastly, each topological node is then
categorized as stated above, using information about di-
rection of arcs and neighbor nodes connected to it.

A topological map generated from Voronoi diagram
in Figure 2 is shown in Figure 3(a) and its graphical rep-
resentation is shown in Figure 3(2). Note that node kl
is a combined node and is corresponding to two Voronoi
vertices generated from the cross intersection on the
map.

Figure 2: A Voronoi diagram from a floor map

5 Navigation System Architecture

In this section, we first describe the overview of the nav-
igation system. Then, the localization process, which is
designed to deal with ambiguous situation using Multi-
ple Hypothesis Tracking, is discussed in more detail.

5.1 Overview
Our navigation system is developed for a wheel robot
equipped with a laser range finder. The overall system
architecture consists of four main components as shown
in Figure 4.

Map Interpreter
The Map Interpreter creates a topological map from a
floor map provided by user, as described in Section 4. It
receives a starting location and orientation of the robot,
as well as a goal location relative to the floor map and as-
sociates them to arcs on the generated topological map.

Movement Controller
While navigating, the Movement Controller performs
local obstacle avoidance while trying to move to a given
goal position. To accomplish this, it uses a poten-
tial field approach, in which obstacles radiate repulsive
forces, whose strength is inversely proportional to dis-
tance to the robot, and the goal is represented as an
attractive force. The robot sums the force vectors and
moves in that direction, while controlling its speed ac-
cording to distance to the nearest obstacle in front of it
to avoid collision.



Label Neighbors Attributes
a c Endpoint
b c Endpoint
c a, d, b Dead-end, Endpoint=a, b
d c, e, kl T-intersection

c ⊥ kl, e ⊥ kl
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Figure 3: The topological map of Figure 2

Cartographer
The Cartographer component integrates readings from
two-dimension laser range finder (LRF) into a robot-
centric grid-based map, which is used for landmark
recognition and obstacle avoidance. The map covers
area of five meters around the robot, and has one cen-
timeter resolution.

We assume that a corridor environment consists
mostly of straight walls, with little irregularities. Un-
der this assumption, at each update cycle, new readings
are integrated into the map by matching straight lines
extracted from the readings to those in the map. To do
this, Hough transform is applied to the readings from
the laser range finder and the robot-centric map. Each
straight line is projected to a point in Hough plane.
Under an assumption that the change of robot’s pose
is small between updates, the correspondences between
straight lines in new sensor readings and those in the
robot-centric map can be determined by simply search-
ing for the two nearest point in the Hough plane, one
from the map and the other from the new readings.
Then, translation and rotation between update is calcu-
lated from the difference of Hough parameters between
the matching straight lines. Odometry is used instead
when the matching is too ambiguous or straight lines
cannot be extracted.

A local topological map is generated from the robot-

Sketch Map

Odometry

LRF

Actuators

Map Interpreter

Cartographer Thinker

Movement 
Controller

- Voronoi Diagram Generation
- Topological Map Generation

- Localization
- Path Planning

- Obstacle Avoidance

- Robot-Centric Grid-Based 
  Map Maintainance
- Local Topological Map 
  Generation

Figure 4: Navigation System Architecture

centric map, using the method described in the previous
section. Each node is categorized and attributes are as-
signed to it. The exceptions are nodes that is not the
nearest to the robot, and is not an Endpoint or a Cor-
ner. These nodes cannot be categorized reliably, due
to the fact that the robot can observe the environment
only partially. Therefore we categorize them as Generic
nodes instead. This module then pass the local topolog-
ical map to the Thinker for use in localization.

Thinker
Localization is performed using a technique based on
Multiple Hypothesis Tracking. The localization tech-
nique will be discussed in the next subsection. The
Thinker also acts as a path planner, giving a goal posi-
tion in the current robot-centric map to the Movement
Controller. The goal position is choosen from points
on a Voronoi edge on which, according to localization
results, the robot should move in order to (hopefully)
reach the next node on the global path.

5.2 Localization Based on Multiple Hypothe-
ses

The Thinker performs localization using the local topo-
logical map created by the Cartographer and the global
topological as inputs. Before discussing the localization
method, the following terms that will be used in this
subsection is defined.

Match between nodes
Two nodes strictly match if they have the same number
of neighbors and have the same attributes, without
considering difference of labels. For example, a Corner
node v that has three neighbors v1, v2, v3 with v2 as
the Endpoint matches with a Corner node w that has
three neighbors w1, w2, w3 with w1 as the Endpoint.
Additionally, two nodes match if they are strictly
match, or at least one of them is a generic node and
they have the same number of neighbors. In other
words, a generic node match everything that has the
same number of neighbors as itself.

Robot Pose
A pose of a robot is a directed arc �ij in a topological
map that the robot is moving on. In other words,
robot is somewhere between node i and j, and is
heading to node j.

Pose Hypothesis



A hypothesis of the current robot pose h = �vivj is an
the arc robot is presumed to be moving on. A list of
nodes that the robot detected before getting to the
current pose and a belief value (ranging from 0 to 1)
are attached to each hypothesis. A distance between

two hypothesis h = �h1h2 and k = �k1k2 is defined as
number of nodes in the shortest path between h2 and

k1 that do not pass through �h2h1 or �k2k1. If such path
is impossible, then we define the distance as infinity.

Current Pose Candidate
Let the topological node the robot is approaching be
ncurr, its neighbors be n1, n2, ..., nk, in
counterclockwise order, and �n1ncurr be the arc the
robot approached ncurr. Let C = {c1, . . . , cn} be nodes
in the topological map that match ncurr. A directed
arc �micj is a candidate of the current pose when mx

match ny , where
x = imodk +1, (i+1)modk+1, . . . , (i+k−1)modk +1,
y = 2, 3, . . . , k, and m1, . . . , mk are neighbors of cj in
counterclockwise order.

Localization and Local Path Planning
The Thinker maintains a set of hypotheses of the current
robot pose H = {h1, . . . , hN} that starts out with one
initial hypothesis created with the pose of the robot as
given to the Map Interpreter by the user, and belief
value of 1. H is updated when the robot gets near a
topological node detected by the Cartographer, denoted
here as ncurr. The update algorithm is as followed:

Let set Ccurr = {c1, . . . , cM} be a set of current pose
candidates generated by ncurr. If Ccurr = φ, then it is
assumed that this ncurr is conflicting with the map, and
is ignored and the algorithm ends here. Otherwise, for
each hypothesis hi = �vjvk ∈ H ∪ Ccurr

• If hi ∈ H and hi ∈ Ccurr: The robot has found the
destination node, vk, as expected.

1. Create hypothesis hN+1 = hi and add it to
H, N=N+1.

2. If ncurr strictly match with vk, increase the
belief value of hi by 100%, else increase it by
50%.

3. If vk is the goal, and hi has the highest belief
value, then assume that the robot has reached
its goal and stop.

4. Find the shortest path from node vk to the
goal, using Dijkstra’s shortest path algorithm.
Let �vkvl be a directed arc included in the
path.

5. Add vk to the detected node list associated
with it and let hi = �vkvl.

• else if hi ∈ H and hi /∈ Ccurr: The robot has
arrived at an unexpected node. It might not be
where it though it was, or may be this is due to
noise in the environment.

1. Decrease belief value of hi by 25%.

• else if hi /∈ H and hi ∈ Ccurr: The robot has
arrived at an unexpected node. If this hi is not too
far from those in the hypotheses list, chances are
the robot has passed through the nodes between
them without noticing. Otherwise, this node is
probably generated from noise in the environment.

1. Find k, a hypothesis in H that is nearest to
hi.

2. If the distance d between k and hi is more
than 1, discard hi, else create a new hypoth-
esis hN+1 = hi with belief value equal to
1/(d + 1) times the belief value of k.

3. Find the shortest path from node vk to the
goal, using Dijkstra’s shortest path algorithm.
Let �vkvl be a directed arc included in the
path.

4. Add vk to the detected node list associated
with it, and let hi = �vkvl

Each time a pose candidate is used to update a pose
hypothesis, there is a risk of association error. This risk
grows with the degree of discrepancy between the map
and the real environment, and the uncertainty of the hy-
pothesis. Furthermore, a complex environment tends to
create many “ghost” nodes that greatly increase chance
of association error. In order not to loose the true pose
hypothesis by updating it incorrectly, in the algorithm
above, each hypothesis is split into two identical copies
and the update is applied to only one of them.

To keep number of hypotheses low, when a hypoth-
esis is added to the set H, it is check if there is already
the same hypothesis existed. If the data associated with
the hypothesis are different, then the one with higher
belief value is kept and the other discarded. Lastly, af-
ter finished updating H, belief value for each hypothesis
is normalized so that the sum of belief values of all hy-
potheses equals to one. Hypotheses with belief value be-
low a threshold are discarded. In our case, the threshold
is half the average of belief value of hypotheses.

6 Experimental Results

In this section, we report on experiments in simulated
corridor environments. Three navigation experiments
were performed with a robot simulator using maps
shown in Figure 5. On the left side is the map of envi-
ronments that the robot navigated in, and on the right
side is the sketch map of the environment given to the
robot. In each environment, three navigation tasks are
given, denoted by triangles, rectangles, and circle in
the map, which are call task 1, task 2 and task 3, re-
spectively. Starting poses of the robot are shown as the
marks with arrow, and goal locations are the marks hatt
have no arrow.

If the robot comes to stop around the goal position,
we considered the task successful. On the other hand,
if the robot stop elsewhere or shows no sign of coming
to a stop in a reasonable time, we consider the task as
a failure.

The results are shown in Table 1. Out of 9 tasks, 7
are performed successfully. In the successful runs, the
number of hypotheses are low and the most likely pose
and the second most likely one have a distinct different
in belief values. This shows that the robot can handle
the unexpected obstacles and other irregularities well
enough in those situation.

However, the robot failed to come to a stop in ex-
periment 2 during the green and blue navigation task.
The number of hypotheses and the belief values are the
values at the time we decided to stop the robot. In
these experiments, the paths to the goal locations lead
the robot through many unknown obstacles. In these
circumstances, many hypotheses are created and there
is not enough known landmarks along the way to justify
them.



(a) Experiment 1
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(c) Experiment 3

Figure 5: Maps used in navigaiton experiments

7 Future Works and Conclusions

We have described a robot navigation system designed
to operate in indoor corridor environments, using a
sketch map provided by a user. The system enable
users to easily supply the robot with information about
the environment, thus eliminating the need for explo-
ration. This work consists of two main aspects: one is
to make a robot understand a sketch map given to it,
and the other is to use the map effectively in naviga-
tion. In order to interpreted the sketch map, a Voronoi
diagram is extracted from the sketch map and then in-
terpret in into a topological map. To make use of the
topological map, which is an incomplete description of
the environment, we deploy a technique based on Multi-
ple Hypothesis Tracking in localization. The basic idea
is tested in a simulated environment with satisfactory
results. We plan to test this system further in real en-
vironment, where path will be much longer than and
more complex than in the simulation.

The system can still be improved in many ways. A
proper planning and action selection algorithm is needed
to improve chance of successful navigation in confusing
situations. Additionally, we would like to incorporate
a probabilistic framework, such as Baysian evidence fu-
sion, into the hypothesis update method in the localiza-
tion process, where we are relying on trials-and-errors to

Table 1: Experimental results
Exp# Task Result # of # 1 # 2

Hypo. belief belief
1 1 success 2 0.78 0.22

2 success 2 0.80 0.20
3 success 2 0.84 0.16

2 1 success 2 0.66 0.33
2 failed 8 0.37 0.22
3 failed 7 0.38 0.20

3 1 success 2 0.82 0.18
2 success 3 0.59 0.32
3 success 4 0.58 0.20

determine various parameters for updating belief values
of the hypotheses. Another problem is that, navigation
using Voronoi vertices as landmarks is not feasible in
some situation, such as when robot is moving in a large
hall, where farther side of the hall is not in robot’s sensor
range, thus making it difficult to create accurate Voronoi
diagram of the hall. Further work will investigate the
strategies for navigation in large space to address this
problem.
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