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Summary

Two requirements should be met in order to develop a practical multimodal in-
terface system, i.e., (1) integration of delayed arrival of data, and (2) elimination
of ambiguity in recognition results of each modality. This paper presents an e�-

cient and generic methodology for interpretation of multimodal input to satisfy
these requirements. The proposed methodology can integrate delayed-arrival

data satisfactorily and e�ciently interpret multimodal input that contains am-
biguity. In the input interpretation, the multimodal interpretation process is
regarded as hypothetical reasoning and the control mechanism of interpreta-

tion is formalized by applying ATMS (Assumption-based Truth Maintenance
System). The proposed method is applied to an interface agent system that

accepts multimodal input consisting of voice and direct indication gesture on a
touch display. The system communicates to the user through a human like inter-

face agent's 3D motion image with facial expressions, gestures and a synthesized
voice.
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1 Introduction

Humans can e�ciently communicate with each other by using various means of
communication such as language (voice), gestures, facial expressions and their

combination. Thus we can say that human-human communication is essentially
multimodal. A multimodal human-computer interface (MMIF), which enables
a user to communicate with a computer without paying special attention to

input methods, i.e., an MMIF which accepts such input that anybody may
give to his/her human counterpart is required (Maybury, 1994). As is said

in (Maybury, 1993), human-computer interaction (HCI) technology should be
promoted by developing practical MMIF technology, and various prototypes

have been built to date.
In general, an MMIF reasons users' intentions from a set of fragmentary

information which is entered using a variety of modalities. It receives multiple

recognition results, which come asynchronously from the recognition modules,
for example, a command by voice, or direct indication by a pointing device.

Then the MMIF analyzes the relations among them, integrates, and �naly in-
terprets them. Two requirements should be satis�ed in order to develop a
practical MMIF which can integrate and interpret multimodal input (MM in-

tegration/interpretation), i.e., (1) integration of delayed-arrival data each of
which arrives at di�erent time, and (2) elimination of ambiguity in recogni-

tion results of each modality. We employed an assumption-based truth mainte-
nance mechanism, ATMS (deKleer, 1986a; deKleer, 1986b), and formulated the

control mechanism of MM input integration/interpretation in order to build a
generic framework and e�ciently cope with these problems.

We have developed a multimodal interface agent system that accepts multi-

modal input, namely the user's utterances and �nger gestures on a touch screen
such as pointing and circling. The system communicates to the user through a

human-like interface agent's 3D motion image accompanied with a synthesized
voice and non-verbal messages, namely facial expressions and hand gestures.
Through developing, testing, exhibiting the system, we have obtained diverse

knowledge about the multimodal HCI.

2 Multimodal interface

2.1 Multimodal interface agent system

Our goal is to establish an HCI technology and methodology which enables nat-

ural and e�cient communications with computers. Considering conventional
HCI methods, e.g., GUI, we think that more natural human-computer commu-

nication can be realized by taking account of the four key points shown below:

Media integration that makes HCI similar to human-human natural com-

munications, that is, integration of messages from various media, and
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interpretation of the result of the integration.

Media complementation , i.e., the ambiguities and incompleteness of recog-

nition results from a certain mode should be compensated by the results
from other modes, since unambiguous and complete recognition in a single

mode cannot be expected.

Media allocation that enables appropriate allocation and switching of com-

munication media according to the nature of handled information and the
system user.

Non-verbal message processing such as facial expressions and gestures. Hu-
mans e�ectively communicate with each other by utilizing numerous non-

verbal messages of various kinds. Non-verbal media can play an important
role in human-computer interaction.

The �rst two points mainly concern the interpretation of user input and the
last two the generation of system outputs. All four points involve tough prob-
lems, and no concrete methodology to process them has been established so

far except the method based on typed feature structure uni�cation presented
by Cohen et al. (1997). Many of the existing MMIFs, e.g., (Bolt, 1980;

Kobsa, 1986; Stock, 1991; Koons et al., 1993), depend not only on domains but
also on modalities, that is, each MMIF is related to a speci�c combination of

modalities and domains. A concrete and generic methodology that can better
cope with the above points is required to construct a practical MMIF.

We have developed an e�cient and generic multimodal integration/interpretation

technology that enables media integration/complementation employing the ATMS,
a hypothetical reasoning framework. We applied the method to a multimodal

interface agent system that does work as a secretary. Figure 1 shows a screen-
copy of the system. It is a kind of interface agent (Maes, 1997) which provides
advice concerning o�ce work on demand (Nakayama et al., 1997). The system

accepts multimodal input such as the user's utterance and gesture on a touch
screen, e.g., pointing and circling. The system communicates to the user through

graphical representations and the interface agent's 3D motion image with facial
expressions, gestures, and synthesized voice. The system can implicitly notify

users of �ve kinds of its internal status with the agents' non-verbal messages as
shown in Figure 2. The agents' mouth synchronously moves with synthesized
voice.

In the situation shown in Figure 1, the user can, for example, select and
view a document on the list. For instance, the user can tell the agent \Show me

this minute book" while circling/pointing around the title of the document to
which he/she wants to refer. The same gesture inputs cause a di�erent system
reaction if the user's words are di�erent; for instance, the system shows di�erent

document for \Show me this minute book" and \Show me this report" in Figure
1.
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Figure 3 shows the overall constituent modules and con�guration of the
multimodal interface agent system. The recognition module for each modal-
ity, for example, the Voice Recognition Module, accepts the user's input to the

corresponding modality, performs its recognition process, and asynchronously
sends the recognition result to the MM Input Integration/Interpretation Mod-

ule. The MM Input Integration/Interpretation Module integrates the given
inputs, derives a multimodal interpretation result, and sends the derived user's
request to the application program, namely the know-how retrieving system.

When the reply from the know-how retrieving system comes, the MM Input
Integration/Interpretation Module sends the display output information to the

Information Display Module, and the output text and non-verbal output infor-
mation to the Agent's Motion/Voice Generator. Both the Voice Recognition

Module and Voice Synthesizer run on UNIX workstations and all other modules
run on Windows-NT based PCs. Each module is an independent software pro-
cess. The modules run collaboratively, communicating with each other through

KQML (Finin et al., 1997) based messages.

2.2 Multimodal reference resolution

One of the most important technologies in developing MMIFs is the method for
interpretating user's multimodal input. The major task of the MM Input Inte-

gration/Interpretation Module is to resolve the reference in a given multimodal
input, called multimodal reference resolution(Neal et al., 1991). Reference res-

olution is the problem of determining the object(s) referred to by verbal/non-
verbal expressions.

Figure 4 shows the multimodal reference resolution process. The user asks

\How can I contact this person?" while circling around the female person on
the touch screen in this example. The MM Input Integration/Interpretation

Module replaces noun phrases with referring expressions, i.e., \this person",
by \Ms. Nakayama" by resolving the referent. Then the know-how retrieving
system receives a natural language text acceptable to the system, \How can I

contact Ms. Nakayama?"
Verbal expressions that can be resolved by the MM Input Integration/Interpretation

Module are noun phrases consisting either of [deictic word, adjective, noun] such
as \this red car", or of [deictic word, noun] such as \this person." When a voice

recognition result comes from the Voice Recognition Module, the MM Input
Integration/Interpretation Module searches for noun phrases which �t either
form above. If a suitable noun phrase is found, the system tries to resolve the

reference expression by integrating it with gesture recognition results.
Figure 5 shows the structure of the Knowledge Base, a semantic network that

contains the whole knowledge for solving MM input interpretation problems (see
Appendix A for detail). The lower left area in Figure 5 indicates the semantic
network of knowledge about verbal expressions. Knowledge about concepts,

namely conceptual knowledge, is shown on the right side. Each ellipse in these
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areas indicates a class particular knowledge belongs to, and each symbol in the
ellipses indicates a knowledge element. Verbal/conceptual knowledge can also
be represented as links among certain elements of these classes. The �gure

demonstrates an example of the reference resolution process, when the user
speaks \this red one" while circling on the upper-left picture, namely a blue

and a red car placed in a garage. Receiving such a multimodal input, the MM
Integration/Interpretation Module performs problem solving by following links
between nodes, which means that the system searches for the resolution, and

the red car on the right side is determined as the multimodal resolution.

3 Control mechanism for multimodal interpre-

tation

3.1 Requirements

Our objectives are to meet the following two requirements in designing the MM
integration/interpretation architecture.

Integration of delayed-arrival data: Recognition result data from certain

modalities are likely to arrive at the MM integration/interpretation mod-
ule after the start of the integration/interpretation process because of
di�erences in the calculation time for the recognition process of each in-

put modality. A framework in which delayed-arrival data is accepted,
e�ciently re-integrated and interpreted is required.

Elimination of ambiguity in recognition results: Generally, two or more
recognition result candidates are received by the MM integration/interpretation

module as the input from each modality, since a correct recognition rate
of 100% cannot be expected. The MM integration/interpretation mod-

ule needs to perform its process e�ciently, identifying the most plausible
candidate for each ambiguous input element.

It will be easier to extend the acceptable modalities of an MMIF if there is a
generic MM integration/interpretation architecture. Parsing technology, which
is studied in several �elds such as natural language analysis, provides an e�ective

basis for MM integration/interpretation. Studies aiming at a generic framework
for MM integration/interpretation often utilize parsing technology for natural

languages exempli�ed by the system developed by Koons et al. (1993) and MM-
DCG (Shimazu et al., 1994). When the delayed-arrival data problem occurs,

however, almost all of the interpretation (parsing) processes have to be per-
formed again in these systems, since most of them do not have special functions
for incremental parsing. Moreover, most of them have to repeatedly perform

the interpretation process for the number of MM input candidates, i.e., they
are ine�cient in coping with the ambiguity of the recognition result of each
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modality. A control mechanism of the problem-solving process is needed for
solving the above problems. This control mechanism should carry out functions
such as \detect and reuse the data which are not a�ected by delayed-arrival" or

\reuse the usable data derived by testing other MM input candidates."

3.2 Problem-solving control with ATMS

The above requirements of the multimodal integration/interpretation process
suggest that the ATMS (deKleer, 1986a; deKleer, 1986b) is appropriate for the

core module of the controlling mechanism of multimodal integration/interpretation.
In other words, the ATMS and an inference system work collaboratively in

ATMS-based problem-solving systems. The inference system executes problem-
solving and informs the ATMS of its inference process. The consistency among

data dealt with by the inference system is managed by the ATMS. The ATMS
holds and revises a set of valid assumptions, which is the origin of the inference
and data derivation process by the inference system. When a contradiction is

encountered, the ATMS computes the set of assumptions responsible for the
contradiction by tracing the derivation paths back from the contradiction to

that assumptions. When an assumption is denied, the data which rely on it
is no longer held and hence are automatically denied by the ATMS. In addi-
tion, the ATMS can avoid repeating calculations which have previously been

performed. This function improves the e�ciency of the inference process.
The information given by the inference system takes the following form:

N1; N2; :::; Nk⇒D;

which means that data D derived from a set of data N1,N2,...,Nk. N1,N2,...,Nk
is called the justi�cation of D .

The data dealt with in the inference system is classi�ed into three categories,
namely premised data, assumed data, and derived data. A premise is a data

that is true in any context. An assumed data is the one produced with an
assumption that holds independently of any other data. A derived data is the
one inferred from other data.

Following each justi�cation back from a certain derived data, one �nally
reaches a set of assumptions or premises. That is to say, a set of assumptions

on which an individual data depends can be calculated. Such a set of assump-
tions is called an environment. One of the major tasks for the ATMS is to record

justi�cations received from the inference system and to calculate and watch a
consistent environment for a set of data. When a contradiction is encountered,
the ATMS calculates the no-good environment, which is the cause of the con-

tradiction, and records it in the ATMS (hereafter called the no-good record).
Every environment included in the no-good record can be regarded as an inad-

equate combination of the assumptions. The ATMS maintains the consistency
of the inference process by using the no-good record. The inference system se-
lects a new consistent environment which does not include the no-good record
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elements and continues inference. A situation in the problem-solving process
is called a context, which is de�ned by the set of the data that hold in that
situation. An environment which derives all the data included in the context

is called the characteristic environment of the context. When an inconsistency
is encountered, the ATMS calculates and records the environment of ?. The

inference system ceases solving the problem in the contradictory context and
transfers it to a new and consistent characteristic environment. With regard
to the nodes which have been derived before that time, the ATMS determines

whether each node holds (in) or does not hold (out) in the new characteristic
environment. A new context is composed of a set of \in" nodes. 1

3.3 MM interpretation based on hypothetical reasoning

The methodology to e�ciently derive MM interpretation results which meets
the two requirements mentioned in Section 3.1 is established by regarding the

MM integration/interpretation process as a control of the problem-solving based
on the ATMS. In this case, the requirements mean integration of delayed-arrival
data and elimination of ambiguity in recognition results.

Figure 6 shows the detailed con�guration of the MM input integration/interpretation
architecture which we have constructed. The recognition module of each modal-

ity, e.g., the Voice Mode Recognition Module, accepts user's input into the
corresponding modality, performs its recognition process, and informs the MM

Input Integration/Interpretation Module of the MM input element that contains
the obtained recognition result, the original input time and the unique ID of
the element. An MM input element generally contains two or more recognition

result candidates of the corresponding modality. The expression forms of MM
input elements di�er for each modality.

The Knowledge Base is a semantic network that contains all the knowledge
required to solve MM input interpretation problems, e.g., the de�nitions of tar-
get objects each of which can be referred to by users, target classes to which

target objects belong, the attributes and values of target objects, and word sur-
faces which express them. Figure 4 summarizes the process running in the MM

Input Integration/Interpretation Module. The module �rst obtains a set of MM
input elements, called an MM input (MMI), by asynchronously receiving MM
input elements from the recognition modules of each modality and determining

the set of MM input elements which should be integrated. The MM Input In-
tegration/Interpretation Module next generates a set of MMI candidates. Each

MMI candidate is generated by selecting one candidate at a time from each MM
input element which composes the MMI. Then, MMI candidates are analyzed

one by one by referring to domain knowledge in the Knowledge Base until a
plausible interpretation is obtained. This is called the MM input interpreta-
tion process. When the interpretation of an MMI is identi�ed, it is sent to the

1It is premised not on parallel type of ATMS, i.e., Basic ATMS (deKleer, 1986a), but on

gone-round type, i.e., DDB-Guided ATMS (deKleer, 1986b).
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Application Module, namely the know-how retrieving system. The Application
Module accepts the MMI as user's input and generates output information. The
MM Input Integration/Interpretation Module receives the output demand from

the Application and performs feedback to the user through an output-mode
module. In this way, the user is able to interact with the Application Module

by utilizing various modalities.
Our current system supports two input modalities, i.e., speech and ges-

ture modalities. The Voice Recognition Module accepts continuous speech of

a sentence, and generates a word-lattice. Then it provides the MM Input In-
tegration/Interpretation Module with n-best sentence candidates of the utter-

ance, which are generated by applying grammatical constraints to the lattice.
Each candidate is composed of the sentence, that is, a list of words, and its

score. The Gesture Recognition Module accepts referring gestures such as
pointing or circling on a touch screen, and also provides the MM Input In-
tegration/Interpretation Module with n-best candidates of referred object(s).

Each candidate is a set of referable objects displayed on the screen. Gesture
recognition result candidates contain neighborhood objects with lower score in

addition to objects directly touched or surrounded.
The number of MMI candidates, which is obtained from a multimodal input

composed of one speech input and one gestural input, is the cross-product of

spoken candidates and gestural candidates. Each MMI candidate is initially
scored, taking into account both speech and gestural scores. Then the candi-

dates are sorted in descending order and interpreted in that order.
The ATMS is noti�ed of details of the MM input integration and interpre-

tation process, and records them. When a contradiction is encountered as a
result of failure of MM input analysis etc., or when data managed by the ATMS
reach a certain state, e.g., when the analysis of an MMI candidate is com-

pleted, the Environment Management Module generates a new environment for
problem-solving and instructs the ATMS to switch to it. The MM Integra-

tion/Interpretation Module continues problem-solving in the new environment.
The integration and interpretation process is governed by production rules

and a rule interpreter (see Appendix). The rule interpreter evaluates the con-

dition part of each rule like PROLOG, i.e., it searches the uni�able knowledge
base element or uni�able and \in" ATMS node for each element in the condi-

tion. If an interpretation, i.e., a set of uni�cations, satis�es all the conditions of
a rule, the rule is executed.

When a multimodal input containing referring expressions which should be
solved is detected, the rule interpreter is given the following goal that is com-
posed of the list of MMI elements and unique id of the MMI, e.g., MMI#1:

referent object( ObjectList;MMI#1)
The rule interpreter selects an MMI candidate from the sorted list of MMI

candidates one by one. The interpreter tests the candidate by repeating the
following cycle:
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1. When the current environment is contradictory, the interpreter attempts
to apply rules in the Contradiction Resolution Rule Set (see Appendix
E) to resolve the contradiction. If any of the rule set has not �red, i.e.,

contradiction resolution has failed, the interpretation of the current MMI
candidate is terminated.

2. The interpreter attempts to apply rules in the Contradiction Detection
Rule Set (see Appendix D) to check whether the current environment is

contradictory or not.

3. The interpreter attempts to apply rules in the Multimodal Referent Res-

olution Rule Set (see Appendix C).

unless more than one of the following three conditions is satis�ed:

� the given goal is satis�ed,

� no rules have been executed in a cycle,

� contradiction resolution fails.

If more than one of the rules in the corresponding rule set in a certain step has

been executed by the end of the step, the above cycle is re-started from the �rst
step.

When an MMI candidate satis�es the given goal, the �nal score of the can-
didate is calculated by subtracting the penalty, which is calculated from the
interpretation cost of the candidate and other heuristics, according to the ini-

tial score. When the interpretation of a candidate �nishes, i.e., success or failure,
the next MMI candidate is selected from the list of candidates and tested as

described above. If the initial score of the newly selected candidate is below the
given threshold lower than the minimal �nal score of successful candidates, in-
terpretations of subsequent candidates are canceled. When any candidate of the

list has not satis�ed the given goal, the multimodal integration/interpretation
process itself ends in failure.

3.3.1 Treatment of delayed arrival

At the beginning of the MM input integration process, the initial value of S,

which is the entire set of MM input elements, is set as empty. Then, the follow-
ing operations are repeatedly applied until either (1) MM input interpretation

succeeds, or (2) MM integration reaches time-out, i.e., no recognition result of
any modalities has arrived by a certain time.

1. When the recognition result of one of the modalities, namely an MM input
element, has newly arrived, the ID of the element is appended to S .

9



2. If SS , an arbitrary subset of S, has not yet been analyzed, the module
assumes SS as MMI and performs MM analysis. 2

3. S is set as empty if a time-out occurs. The module outputs SS and
removes SS from S when MM input analysis has been successful. 3

Each assumption generated in the MMI integration processes is represented

by one of the following two forms:

integrate(SS, Mmi#) It is assumed that all the MMI elements in the list of
MMI element SS (1st argument), which is the subset of the entire set of
MMI elements until then, are integrated as an MMI. An MMI ID (2nd

argument) is assigned to the integration.

no omission(M, SSm, Mmi#) It is assumed that only MMI elements in the
list of MMI element SSm(2nd argument) are the MMI elements of the

modalityM(1st argument) as the MMI of MMI ID Mmi#(3rd argument).
This type is assumed for each input modality that is linked to the system.

Let us assume an MMIF that accepts both voice inputs in natural language, vIn,
and referring gesture inputs, gIn, e.g., circling and pointing, on a touch screen.

Assume a case in which a speech recognition result V#1 is �rst obtained from
voice modality, because it has taken time to recognize gIn. The system assumes

only V#1 as MMI elements for an MMI, and the following three assumptions
are generated and added to the current environment by applying Rule C.1:

integrate([V#1], MMI#1)

no omission(vIn, [V#1],MMI#1)
no omission(gIn, [], MMI#1)

A data expressing MMI is next derived by the following justi�cation, and control
is handed over to the MMI interpretation process (see Rule C.5): 4

integrate([V#1];MMI#1)

& no omission(vIn; [V#1];MMI#1)
& no omission(gIn; [];MMI#1)
) integrated input([V#1];MMI#1)

An MMI candidate is selected in due order and analyzed in the MM input
interpretation process. In this process, an assumption for each MMI element
of the MMI candidate is generated, and the interpretation process advances in

such a way that derivations are made from these assumptions. The ATMS is

2E�ciency of generation and tests of SS can be improved by applying heuristics, for

example by preferentially unifying neighboring time stamps of MMI elements.
3In order to prevent MMI elements which have not been used for analysis and which are

noises in most cases from accumulating in S, MMI elements older than a predetermined period

are also removed from S.
4Although input-time information is included in the predicates, it is not described here for

simpli�cation.
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noti�ed of the detailed process and stores it. The process is shown in Section
3.3.2 in detail using an example.

When the analysis of a certain MMI candidate is completed and the next

MMI candidate is selected, the Environment Management Module calculates
and sets up a new environment appropriate for analyzing the new MMI can-

didate. The data which are assumed or derived in the former interpretation
process become available for the MMI Integration/Interpretation Module by
the operation. Thus, the system can search for the MMI candidate that can

draw an appropriate interpretation, e�ciently employing data generated in its
former problem-solving.

Let us assume that the delayed input G#1 arrives from the gesture modality,
gIn, while MMI interpretation is in progress in the above example. The following

two data are assumed:
integrate([V#1,G#1], MMI#1)
no omission(gIn, [G#1], MMI#1)

Consequently, the following two contradictions are encountered (see Rule D.3
and Rule D.2):

integrate([V#1;G#1];MMI#1)
& no omission(gIn; [];MMI#1)

) ?

integrate([V#1];MMI#1)
& integrate([V#1;G#1];MMI#1)

) ?

In order to resolve these contradictions, the Environment Management Mod-
ule generates a new environment for problem-solving that does not contain

neither no omission(gIn; [];MMI#1) nor integrate([V#1];MMI#1) and con-
tains integrate([V#1;G#1];MMI#1) (see Rule Rule E.4 and Rule E.2). The

ATMS is noti�ed of the newly generated environment and shifts the current en-
vironment to it. By the transfer, the data which should not stand any more are

automatically removed from the context, and data that are not shaded remain
in the new context, so that they can be referred to without re-calculation, (e.g.,
only data derived from the assumption no omission(vIn; [V#1];MMI#1) is

calculated). The MMI integration/interpretation process continues integrating
delayed-arrival data in this way. The state of reasoning data that can be reused

is saved in this process.

3.3.2 Treatment of ambiguity in recognition results

A more detailed MM interpretation process, which follows the MM integration,
is described here by referring to another example to demonstrate that the pro-
cess can e�ciently determine the result, i.e., the referent(s), coping with the

ambiguities in recognition results in each modality. Although the user's ut-
terance and the system's internal symbols are originally written in Japanese,
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we represent them in English here for readers' convenience. Figure 7 shows a
screen copy of the reference resolution sub-system, after the user has spoken the
sentence \What is this person doing?" in Japanese while touching the point

indicated by \x" on the touch screen. 5 The task of the MMIF in this case is
to replace the referring expression \this person" with the name of the referred

target object \Ms. Nakayama", to construct the resolved sentence \What is Ms.
Nakayama doing?", and to send the sentence to the application program. The
target object corresponding to \Ms. Nakayama" is not the �rst-place candidate

for the gesture recognition result, but the second-placed or lower in this case,
because the object corresponding to the touched point is a notice board. MM

interpretation would fail, if the system tested only the �rst-place candidates for
both voice and gesture modality. Therefore, candidate pairs which contain the

second-place candidate or lower have to be searched for. The MMI Interpreta-
tion Process generates MMI candidates from a given MMI and tests them one
by one until a plausible candidate is found.

In such a case, the following three assumptions are �rst generated (see Rule
C.1):

integrate([V#1,G#1], MMI#1)
no omission(vIn, [V#1], MMI#1)
no omission(gIn, [G#1], MMI#1)

and the following node is derived from them by applying Rule C.5:
integrated input([V#1,G#1], MMI#1 )

On testing a certain MMI candidate, an assumption is generated for each modal-
ity in which elements of the MMI candidate are contained. Data derived from

the assumptions di�er depending on the modality. Let us assume that the speech
recognition result V#1, which is composed of n-best sentences, i.e., [(what,
is, this:md#2, person:nn#7, doing), (whom, should, I, send, this:md#2, pam-

phlet:nn#11)], 6 is obtained as a voice recognition result. Wh also assume that
G#1, which is a set of candidates of a location indicated by the user's pointing

gesture, is composed of [Location#20064, Location#20016, Location#20032].
That is, the notice board, the female person (Ms. Nakayama), and the desk
in Figure 7 in this order is obtained as a gesture recognition result. 7 The

�rst MMI candidate, namely [(this:md#2, person:nn#7), Location#20064], is
selected and the following three assumptions are generated and added to the

environment to analyze the MMI candidate by applying Rule C.2, Rule C.3,
and Rule C.4, respectively:

vIn sentence([md#2,nn#7],V#1)
gesture location(Location#20064, G#1)

5The \x" is not displayed on the screen. It is indicated for readers' convenience.
6The representation is simpli�ed to focus on referring expressions in the sentences, although

each word takes the form of \(word surface):(part of speech)#(word id)" in fact. Hereafter,

the interpretation process is described in this simpli�ed manner.
7A gesture recognition result is obtained by searching the set of pre-de�ned knowledge

about locations of objects which is stored in the knowledge base described above.
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deictic word(G#1, md#2)
Then the following data are separately derived from the assumption vIn sentence([md#2,nn#7],V#1)
by applying Rule C.6:

vIn word(md#2,V#1),
vIn word(nn#7, V#1),

By analyzing the words, the following data are also derived from the same as-
sumption vIn sentence([md#2,nn#7],V#1):

modify(md#2, nn#7)

object noun(nn#7, V#1)
verbal modi�er noun([nn#7], V#1)

The interpretation process for the MMI candidate progresses in this way, and
target object candidates that can be derived from the voice candidate, namely,

three \persons" which are labeled male#202, male#203, and female#204, are
obtained by Rule B.2, Rule C.9, and Rule C.14:

expression class(nn#7;person)

& cc relation(male person; is � a;person)
& cc relation(female person; is � a;person)

& class object(male person; [male#202;male#203])
& class object(female person; [female#204])
) object of noun(nn#7; [male#202;male#203; female#204])

object noun(nn#7;V#1)
) singular object(nn#7;V#1)

vIn sentence([md#2; nn#7]; V#1)
& object of noun(nn#7; [male#202;male#203; female#204])

) vIn object(V#1; [male#202;male#203; female#204])

On the other hand, the analysis of the candidate of the directly indicated loca-

tion, namely gesture location(Location#1, G#1), progresses and the candidate
of the indicated object, notice board#1, is obtained by the following derivation

(see Rule C.11 and Rule C.12):

integrated input([V#1; G#1];MMI#1)
& deictic word(G#1;md#2)

& vIn word(md#2; V#1)
) deixis(G#1;md#2;V#1)

gesture location(Location#20064;G#1)
& location object([notice board#1];Location#20064)

& deixis(G#1;md#2;V#1)
) deixis object(G#1; [V#1]; [notice board#1])

These derivation processes are noti�ed to the ATMS and are stored in it.
Here, the system tries to resolve the referent by integrating the data gener-
ated above. However, the interpretation of the MMI candidate fails, since
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notice board#1, which is derived from gIn, is not contained in [male#202,
male#203, female#204], which are obtained from vIn. Then, the following
contradiction is derived (see Rule D.4):

deixis(G#1;md#2; V#1)
& vIn object(V#1; [male#202;male#203; female#204])
& gIn object(G#1; [notice board#1])

) ?

In order to resolve the contradiction, the following three assumptions which

represent the MMI candidate being tested are removed from the current envi-
ronment (see Rule E.3):

vIn sentence([md#2,nn#7],V#1)

gesture location(Location#20064, G#1)
deictic word(G#1, md#2)

Data derived from these assumptions are also removed from the context, i.e.,
they become \out", with the change of the environment. Then the loca-
tion indicated by gesture input is changed from the �rst order candidate Loca-

tion#20064, which is the symbol of the location indicating the notice board,
to the second order candidate Location#20016, namely also indicating Ms.

Nakayama, and the next MMI candidate [what, is, this:md#2, person:nn#7,
doing, Location#20016] is selected. In this way, the following data are assumed

and added to the environment:
vIn sentence([md#2, nn#7],V#1)
deictic word(G#1, md#2)

In this case, the following two data were assumed once in the past interpreta-
tion, since the noun phrase to be resolved that is selected for the voice candidate

is the same as that of the last MMI candidate (see Rule C.2, Rule C.3, and Rule
C.4):

vIn sentence([md#2, nn#7],V#1)

gesture location(Location#20016, G#1)
deictic word(G#1, md#2)

Thus the following data, which have already been derived from the above as-
sumptions, automatically return to the context, so that there is no need to
re-interpret the voice modality candidate:

deixis(G#1, md#2, V#1)
object singular(nn#7, V#1)

vIn object(V#1, [male#202,male#203, female#204])
The assumption gesture location(Location#20016, G#1) is generated and

the candidate, a directly indicated object, is obtained by the following deriva-
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tion in the interpretation of the MMI candidate (see Rule C.12):

gesture location(Location#20016;G#1)
& location object([female#204];Location#20016)

& deixis(G#1;md#2;V#1)
) deixis object(G#1; [female#204])

Then female#204, which is the symbol of the referent indicating Ms. Nakayama,

is readily resolved without re-interpreting the voice modality candidate (see Rule
C.16):

voiceIn object(V#1; [male#202;male#203; female#204])

& deixis object(G#1; [female#204])
& integrated input([V#1;G#1];MMI#1)

& vIn sentence([md#2; nn#7]; V#1)
& singular object(nn#7;V#1)

& gesture location(Location#20016;G#1)
) referent object([female#204];MMI#1)

The interpretation of the MMI candidate succeeds and the resolved sentence

\What is Ms. Nakayama doing?" is obtained by replacing the referring expres-
sion \this person" with \Ms. Nakayama." Then the sentence is sent to the

application program, so that the application is able to interact with the user
without being concerned with referring expressions.

In the above example, the number of queries to the Knowledge Base Module

to test the entire set of MMI candidates is reduced to about 1/5 comparing
with that of the previous version of our multimodal referent resolution system

that does not employ the ATMS-based mechanism. The number of times of
set calculations, e.g., intersection or union, is also reduced to about one half.
The e�ectiveness of the method will be increased by the additions of supported

modalities or by increase of alternatives in recognition results of each modali-
ties.

4 Discussions

4.1 CG agent interface

The developed multimodal interface agent system has been displayed and demon-
strated at several exhibitions, including \Tommorrow21 Toshiba Technology

Exhibition" which was attended by over 60,000 people. We have created a
humanoid user interface with a more realistic face (Suzuki et al., 1996), which

moves and utters in real time. We have found the following e�ects in humanoid
agent interfaces:

Relaxation Audience's reluctance to interact with the systems seems to be
reduced when the agent appears on the screen.
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Gaze Control The user can recognize to whom he/she should talk and can
naturally communicate with the computer gazing at the agent.

Furthermore, the following points have been found important:

Lifelikeness It is important that the agent looks alive. For instance, if the

agent does not react at all until the voice recognition result comes, users
become uneasy. Many members of the audience commented that they

could not determine whether or not the agent was listening. Making the
agent slightly, continuously and randomly move is e�ective for lifelikely-
ness. Blinking of the agent's eyes and face movements are especially e�ec-

tive. In a case of speech recognition failure, our agent says \Pardon?" with
a puzzled expression on his face and a hand gesture, which corresponds to

the status \pardon" in Figure 2. We have found that such clearly visible
non-verbal messages are e�ective in informing the user about the system's

internal status.

Balance Control The agent's looks should be balanced with other elements,

e.g., the quality of the synthesized voice and the reality of movement. Re-
alistic voices and movements, high ability and intelligence are expected
if an agent has a highly realistic appearance. Therefore, we have given

the interface agent a rather comical appearance to avoid audience's dis-
appointment.

4.2 Generality and e�ciency of the method

The proposed multimodal input integration/interpretation method is designed

to be domain independent. That is, the system can work on various domains
only by changing domain knowledge represented in the semantic network con-

tained in the Knowledge Base Module. The generality of the method has been
examined by building two systems each of which works in di�erent domains. One
is an object retrieval system for maps that accepts sentences such as \Cheap

hotels around here," and another is the interface agent system mentioned above.
Both have successfully solved their own problems, i.e., detected referents with-

out changing the multimodal input integration/interpretation program. They
di�er from each other with respect to the domain de�nitions in the knowledge

base including the set of locations of referable objects, and the vocabulary set
for the voice recognition module.

Cohen et al. presented a method of multimodal integration/interpretation

based on typed feature structure uni�cation, and developed QuickSet, a frame-
work for multimodal interaction(Cohen et al., 1997; Johnston et al., 1997; Johnston, 1998).

Their approach is general and well-formulated on the basis of natural language
processing. To cope with recognition ambiguity, it is required to examine each
cross-product of recognition alternatives, e.g., spoken and gestural alternatives
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(Johnston et al., 1997). Johnston (1998) recently introduced the uni�cation-
based multimodal parser dealing with such kind of ambiguity. It is based on
the chart parsing method (Kay, 1980), and prunes down the number of candi-

dates by eliminating overlapping complete edges of lower probability from the
edge list to be executed when higher probability complete edges are selected.

Although our system generates the cross-product number of candidates as sub-
jects of interpretation, it is only the worst case to examine all the candidates.
By pruning analyses of hopeless (low-scored) MMI candidates as described in

Section 3.3, the number of analyzed MMI candidates is signi�cantly less than
the worst case. Furthermore, the computational complexity is greatly reduced

by the e�ectiveness of cache mechanism of the past interpretation data provided
by the ATMS even in the worst case. That is, as the interpretation progresses

to the lower-scored candidate, less rules need to be �red for the interpretation.
Our current system accepts only the task of multimodal referent resolution

and does not support other types of multimodal command, e.g., generation of an

object. Our architecture for rule interpretation is based on typeless uni�cation
of atomic sentences like PROLOG, which means that the inference process is

controlled by applying limited constraints, i.e., predicate names and location of
arguments. To increase supporting command types, a typed approach similar to
QuickSet would be needed.

Besides, a set of objects can be selectable as a candidate of recognition result
provided by our Gesture Recognition Module, if the set is preliminarily given as

one of the subjects of referents. Consider the case in which one gestural input
is obtained as shown in the example of Figure 7. If the noun phrase part of the

speech candidate is \this person", \Ms. Nakayama" is obtained as the resolution
result candidate. The gestural candidate that contains all the characters in the
picture matches, if speech is \these persons". 8

Oviatt et al. (1997) empirically determined that the most (43%) multimodal
inputs were not simultaneous but subsequent ones, i.e., gesture �rst and then

speech, among all the collected multimodal inputs each of which contain deictic
term(s). Our system could correctly integrate and interpret subsequent mul-
timodal input by changing the constraint of time stamps, which is referred to

decide whether certain delayed inputs should be integrated or not. This provides
evidence of our method's ability to cope with delayed-arrival data.

We have also found experimentally that the scoring algorithms of gesture
recognition modules should be changed to some extent according to the domains

for higher e�ciency. Moreover, modality dependence remains in the formalism
such as the grain sizes of assumptions and their controlling policy.

Although the proposed method itself is generic, the control method requires

many portions depending on modalities. The developed system is controlled to
resolve its problems in such a way that greater importance is given to speech

8To di�erentiate \person" and \persons" is di�cult in English speech recognition. In

Japanese, however, it is not so di�cult, i.e., \person" in English corresponds to \hito" and

\persons" to \hitotachi", and both \this" and \these" correspond a same word \kono".
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recognition results than gesture recognition results. Such control allows the user
to roughly indicate the desired object(s) by touch gesture and to exempt him/her
from the precise indication. We believe that it is one of the most important ad-

vantages of media complementation to integrate (appropriate) candidates which
are unfortunately placed in the lower ranks. On the other hand, the number of

good e�ects of media complementation di�ers among media. In our case, voice
recognition plays a more important role for the gesture recognition module than
the gesture does, i.e., lower rank candidates of speech recognition can hardly

be rescued.

4.3 Grain size of assumptions

In general, there is a trade-o� between the reusability of past problem-solving
data and the degree of the side e�ects of changing the status of each assumption.

If reusability is improved, i.e., if the coverage of each assumption is enlarged,
side e�ects will increase and testing of promising candidates will be avoided.
Moreover, problem-solving repetition increases the number of ATMS nodes and

the number of contradictory records. That causes certain overheads for using
ATMS, such as node searches and contradiction evaluation.

Such problems are inevitably caused by the minimality and monotonicity
of contradictions which are inherent characteristics of ATMS. Therefore, it is
necessary for advanced HI systems to implement a mechanism, like \intelligent

oblivion" of human beings. For example, the grain sizes of assumptions in
human's inferences change dynamically and past assumptions disappear within

an appropriate period.

4.4 Treatment of time lapse

The ATMS has been employed for problems in various �elds because of its

exibility and usefulness since it was proposed by deKleer. Although there have
also been many attempts regarding its utilization in the �eld of HI, e.g., to

extract linguistic information from speech recognition results with ambiguity
(Nishioka et al., 1991), most of them have not led to practical applications.

The ATMS is able to construct/reproduce any problem-solving context re-
gardless of the reasoning sequence. It expands the 
exibility of the reasoning
sequence of PS. In solving a certain scale of problems, i.e., tasks, it is often

necessary to refer to former problem-solving data that was updated previously.
If such problems are dealt with by hypothetical reasoning, di�culties and com-

plexities will arise in managing context. This has barred the application of
ATMS to practical tasks.

The proposed framework can deal with data whose validity is transformed in
the following way. This function of the framework makes it possible to overcome
the computational complexity of the past problem-solving data: 9

9This method has not yet been implemented.
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1. All the queries to the Knowledge Base Module are managed through the
Environment Management Module.

2. The Environment Management Module generates an ATMS assumption
which gives input time information to each reply from the Knowledge Base
Module, and memorizes assumption IDs in its internal history.

3. When the knowledge base is updated, the Knowledge Base Module enu-

merates all the former queries that are in
uenced by the update and noti-
�es other modules. The Environment Management Module assigns invalid

ags to the corresponding internal records.

4. The Environment Management Module searches its internal history �rst
when a query is received from the MMI Integration/Interpretation Mod-

ule. If the same inquiry exists in the history and is valid, the ID of the
corresponding ATMS node is replied. When there is no valid node in

the history, the Environment Management Module queries the Knowledge
Base Module.

The above function of, so to speak, a cache memory of the knowledge base
enables problem-solving not only on the basis of the newest knowledge but also

by referring to the knowledge of the former context. Moreover, a snapshot of
each problem-solving context can be reproduced.

5 Concluding remarks

This paper has proposed a new multimodal input integration/interpretation
method for MMIF based on hypothetical reasoning. Using this technology, the
method is able to cope with delayed-arrival data and ambiguities in recogni-

tion results. Furthermore, it e�ciently performs re-calculation. Although the
proposed method itself is generic, the control method requires many portions

depending on modalities. Generic control knowledge needs to be separated.
The e�ectiveness of non-verbal messages are qualitatively evaluated by devel-
oping and testing a multimodal interface agent system employing the proposed

method.
Building a practical MMIF on the basis of the experimental reference reso-

lution system is a subject of future work in conjunction with the enhancement
of acceptable verbal expressions and of acceptable non-verbal modalities.
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Appendix

Rule sets which are executed during multimodal integration/interpretation are
described here. Some of the rules are implemented as C++ program codes.

Both common primitive predicates in PROLOG, e.g., \member", \append",
and \bagof", and generic set operations, e.g., \intersection" and \union", are
described in the rules without explanation. Each rule is tested and executed in

all applicable interpretations in each execution cycle.
Atomic sentences whose relation constants are written in bold are assump-

tion ATMS nodes, and those in italic are derived nodes. The term \PREMISE"
in rules in Appendix means generation of a premise node of the designated

atomic sentence, and \ASSUME" means generation of an assumption node.
\DERIVE" means derivation of the designated atomic sentence justi�ed by all
ATMS nodes in the condition �eld of the rule.

A Knowledge Base Structure

The domain knowledge is stored in the Knowledge Base. Each knowledge has
one of the followings, and whole knowledge assertions constructs a semantic
network.

� expression-npr( ProperNounSurface, ExpressionId)

Each knowledge of this type links surface string of a proper noun

word and its expression-id.
ex.) expression-npr(\Ms.Nakayama", npr#13)

� expression-npn( ProNounSurface, ExpressionId)

Each knowledge of this type links surface string of a pronoun word

and its expression-id.
ex.) expression-npr(\one", npn#2)

� expression-nn( NounSurface, ExpressionId)

Each knowledge of this type links surface string of a noun word and
its expression-id.
ex.) expression-nn(\person", nn#41)

� expression-mf( Modi�erFeatureSurface, ExpressionId)

Each knowledge of this type links surface string of a word that mod-
i�es features of objects and its expression-id.

ex.) expression-mf(\colored", mf#3)

� expression-mv( Modi�erValueSurface, ExpressionId)
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Each knowledge of this type links surface string of a word that mod-
i�es values of objects and its expression-id.
ex.) expression-mv(\red", mv#9)

� expression-md( Modi�erDeixisSurface, ExpressionId)

Each knowledge of this type links surface string of a deictic word

and its expression-id.
ex.) expression-md(\this", md#2)

� class( ClassName)

Each knowledge of this type declares a class of a concept.

ex.) class(car)

� instance( ClassName, InstanceName)

Each knowledge of this type declares an object of a certain class.
ex.) instance(female, female#1)

� cc-relation( ClassName1, RelationName, ClassName2)

Each knowledge of this type declares relations between the speci�ed

two classes.
ex.) cc-relation(female, is-a, human)

� expression-class( ExpressionId, ClassName)

Each knowledge of this type links an expression and a class.
ex.) expression-class(nn#41, human)

� expression-feature( ExpressionId, FeatureName)

Each knowledge of this type links an expression and a feature.

ex.) expression-feature(mf#3, color)

� expression-value( ExpressionId, ValueName)

Each knowledge of this type links an expression and a value.
ex.) expression-feature(mv#9, red)

� expression-object( ExpressionId, ObjectId)

Each knowledge of this type links an expression and an object.

ex.) expression-object(npr#13, female#1)

� class-feature( ClassName, ListOfFeatureName)

Each knowledge of this type declares the set of features that each
instance of the class has.
ex.) class-feature(car, [size,color,age])
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� object-feature-value( ObjectId, FeatureName, ValueName)

Each knowledge of this type declares the value of speci�ed feature

of the speci�ed object.
ex.) object-feature-value(notice board#1, color, white)

� location-object( ListOfObjectId, LocationId)

Each knowledge of this type declares the set of objects located on/in
the speci�ed location.
ex.) location-object([female#204], Location#20016)

B Static Knowledge Generation Rule Set

When the system is started, the following rules are applied to all applicable

knowledge-base elements.

[Rule B.1 ]

if expression value( ValueWordId, ValueName) and

bagof(target object feature value( ObjectId, FeatureName, ValueName),

ObjectId, LObjectOfValue)
then PREMISE object of value( ValueWordId, LObjectOfValue)

[Rule B.2 ]

if expression class( NounWordId, ClassExp) and

collect all leaf classes which link to ClassExp into LLeafClass and

member( LeafClass, LLeafClass) and

class object( LeafClass, LObjectOfClass)

then PREMISE object of noun( NounWordId, LObjectOfClass)

C Multimodal Referent Resolution Rule Set

[Rule C.1 ]

if the system decides that all MMI elements in LMmiElementId

are to be a multimodal input and

the set of MMI elements from gesture modality is LGinId and

the set of MMI elements from voice modality is LVinId
then ASSUME integrate( LMmiElementId, MmiId)

ASSUME no omission(gIn, LGinId, MmiId)
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ASSUME no omission(vIn, LVinId, MmiId)

[Rule C.2 ]

if the system selects the candidate of sentence as LWordId,

list of word id, in VInId, the MMI element in the current MMI
then LET all \in" vIn sentence( , ) be out and

ASSUME vIn sentence( LWordId, VInId)

[Rule C.3 ]

if the system selects the candidate of referred location as
LocationId, in GInId, the MMI element in the current MMI

then LET all \in" gesture location( , ) be out and

ASSUME gesture location( GInId, LocationId)

[Rule C.4 ]

if the system selects the referring word, DeicticWordId, such as
\this" or \that" referred by gesture input GInId

then LET all \in" deictic word( , ) be out and

ASSUME deictic word( GInId, DeicticWordId)

[Rule C.5 ]

if integrate( LMmiElementId, MmiId) and

no omission(gIn, LGinId, MmiId) and

no omission(vIn, LVinId, MmiId) and

append( LGinId, LVinId, LMmiElementId)
then DERIVE integrated input( LMmiElementId, MmiId)

[Rule C.6 ]

if vIn sentence( LWordId, VInId) and

member( WordId, LWordId)
then DERIVE vIn word( WordId, VInId)
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[Rule C.7 ]

if vIn sentence( LWordId, VInId) and

member( WordId, LWordId) and

the word of WordId is the referred noun in the sentence
then DERIVE object noun( WordId, VInId)

[Rule C.8 ]

if vIn sentence( LWordId, VInId) and

object noun( ObjectWordId, VInId) and

member( ModifyWordId, LWordId) and

the word of ModifyWordId modi�es the word of ObjectWordId
then DERIVE modify( ModifyWordId, ObjectWordId)

[Rule C.9 ]

if object noun( WordId, VInId) and

the word of WordId is singular

then DERIVE singular object( WordId, VInId)

[Rule C.10 ]

if object noun( WordId, VInId) and

the word of WordId is plural
then DERIVE plural object( WordId, VInId)

[Rule C.11 ]

if integrated input( LInputId, MmiId) and

member( GInId, LInputId) and

member( VInId, LInputId) and

deictic word( GInId, DeicticWordId) and

vIn word( DeicticWordId, VInId)

then DERIVE deixis( GInId, DeicticWordId, VInId)

[Rule C.12 ]

if location object( LObjectId, LocationId) and
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gesture location( GInId, LocationId) and

deixis( GInId, , VInId)
then DERIVE deixis object( LObjectId, [ VInId], [ GInId])

[Rule C.13 ]

if vIn sentence( LWordId, VInId) and

object of noun( LObjectNoun, NounWordId) and

object of value( LObjectValue, ValueWordId) and

member( NounWordId, LWordId) and

member( ValueWordId, LWordId) and

intersection( LObjectNoun, LObjectValue, LReferents)
then DERIVE verbal object( LWordId, LReferents)

[Rule C.14 ]

if vIn sentence( LWordId, VInId) and

object of noun( LObjectNoun, NounWordId) and

member( NounWordId, LWordId) and

Rule C.13 is not applicable

then DERIVE verbal object( LWordId, LObjectNoun)

[Rule C.15 ]

if vIn sentence( LWordId, VInId) and

verbal object( LWordId, LReferents) and

verbal modi�er and noun( , VInId)
then DERIVE voiceIn object( LReferents, VInId)

[Rule C.16 ]

if GOAL is referent object( , MmiId) and

voiceIn object( LReferents, VInId) and

deixis object( LReferents, LVinId, LGinId) and

integrated input( LInputId, MmiId) and

vIn sentence( LWordId, VInId) and

singular object( WordId, VInId) and

gesture location( GInId, ) [For all GInId in LGinId] and

member( VInId, LVinId) and

append([ VInId], LGinId, LInputId) and
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count( LReferent) = 1
then DERIVE referent object( LReferents, MmiId)

[Rule C.17 ]

if GOAL is referent object( , MmiId) and

voiceIn object( LReferents, VInId) and

deixis object( LReferents, LVinId, LGinId) and

integrated input( LInputId, MmiId) and

vIn sentence( LWordId, VInId) and

plural object( WordId, VInId) and

gesture location( GInId, ) [For all GInId in LGinId] and

member( VInId, LVinId) and

append([ VInId], LGinId, LInputId) and

count( LReferent) 6= 1
then DERIVE referent object( LReferents, MmiId)
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D Contradiction Detection Rule Set

[Rule D.1 ]

if no omission( Modality, LId1, MmiId) and

no omission( Modality, LId2, MmiId) and

LId1 6= LId2

then DERIVE ?

[Rule D.2 ]

if integrate( LMmiElementId1, MmiId) and

integrate( LMmiElementId2, MmiId) and

LMmiElementId1 6= LMmiElementId2
then DERIVE ?

[Rule D.3 ]

if integrate( LAllElementId, MmiId) and

no omission( M, LIdM1, MmiId) and

LIdM2 = subset of LAllElementId each of which is from M and

LIdM1 6= LIdM2
then DERIVE ?

[Rule D.4 ]

if deixis( GInId, DeiciticWordId, VInId) and

voiceIn object( VInId, LVoiceObject) and

deixis object( GInId, LDeixisObject) and

LVoiceObject 6= LDeixisObject

then DERIVE ?
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E Contradiction Resolution Rule Set

[Rule E.1 ]

if no omission( Modality, LId1, MmiId) and

no omission( Modality, LId2, MmiId) and

LId1 � LId2

then LET no omission( Modality, LId1, MmiId) be out

[Rule E.2 ]

if integrate( LMmiElementId1, MmiId) and

integrate( LMmiElementId2, MmiId) and

LMmiElementId1 � LMmiElementId2
then LET integrate( LMmiElementId1, MmiId) be out

[Rule E.3 ]

if the cause of the contradiction is resolution failure

then LET vIn sentence( LWordId, VInId)
and/or gesture location( LocationId, GInId)

and/or deictic word( GInId, DWordId) be out

[Rule E.4 ]

if integrate( LAllElementId, MmiId) and

no omission( M, LIdM1, MmiId) and

LIdM2 = subset of LAllElementId each of which is from M and

LIdM1 � LIdM2
then LET no omission( M, LIdM1, MmiId) be out
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Figure 1: Multimodal Interface Agent System
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Figure 2: Screen images of the agents
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Figure 3: Overall con�guration of multimodal interface agent system
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Figure 4: Multimodal reference resolution process
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Figure 5: Knowledge base structure

35



Figure 6: Detailed con�guration of the multimodal input integra-

tion/interpretation module
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Figure 7: Example screencopy of MM reference resolution
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