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THEMIS: A Nonmonotonic Inductive 
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Nonmonotonicities of students7 behavior and the student model 
inference process itself are discussed including the usage of the 
model in tutoring. They are classified into two classes, i.e., single 
world contradictions and multi-world contradictions (student 
knowledge contradictions). Student knowledge contradictions are 
the essentials of the learning processes of a student. This paper 
presents a new perspective to capture them formulating a stu- 
dent discrimination structure. A student model description lan- 
guage SMDL and modeling algorithm HSMIS, which is a non- 
monotonic inductive student modeling system, are formulated to 
cope with single world contradictions. SMDL is based on a logic 
programming language taking 4 truth values. THEMIS is a new 
nonmonotonic and inductive model inference system which in- 
corporates deKleer's ATMS as a vehicle for formulating both 
nonmonotonicities (contradictions). The formulated THEMIS 
embodies advanced representation power, sufficiently high 
adaptability and generality. Not only can it follow a student's 
change of understanding, but it can model a student who has in- 
consistent knowledge. 

INTRODUCTION 

Student modeling is one of the most important topics of ITS research, 
because the behavior of an ITS largely depends on a student model, which 
represents a snapshot of the student's knowledge. This is a reason why 
many efforts concerning student modeling have been made, for instance, 
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overlay model, buggy model, perturbation model, etc. (Wenger, 1987). Most 
of the conventional modeling methods have simple pragmatic structures and 
have been incorporated into many ITSs. However, all the methods have 
some limitations and no complete and sound inference procedure for model- 
ing has been obtained yet. In this paper, we formulate the student modeling 
problem as an inductive inference problem, i.e., a problem of constructing a 
model explaining observed data which are, in our case, student's answers to 
the problems given. 

A student who is in the fixing stage1 of the acquired knowledge often 
shows contradictory behavior. This means a student is apt to apply problem 
solving methods unstably, since he2 has not built them or since he has not 
completed in a formulation of related concepts, etc. It is clear that he shows 
such nonmonotonic learning processes in fixing his knowledge in the pro- 
cess of acquiring new knowledge. There are other types of contradiction to 
be considered in designing a student modeling system. A modeling system 
often gets an answer from the student that is consistent with his current be- 
lief but inconsistent with his past answers, because he has changed his 
mind as his learning proceeds or he sometimes makes careless mistakes, so- 
called "slips." 

Contradictions which a modeling system should cope with are classified 
into the following two types: 

1. contradictions which should be resolved by revising the student model, 
and 

2. contradictions which should be captured as they are. 

Generally speaking, an ITS should follow a student's nonmonotonic 
change. Furthermore, a student modeling system should realize more flexible 
modeling behavior and construct reasonable student models from didactic 
viewpoints by embodying a teacher's insight, e.g., the ability to capture her 
student's status by asking fewer questions. Contradictions of type (I) inevi- 
tably appear in the student modeling process. Therefore, a student modeling 
system is required to have the ability to cope with various kinds of non- 
monotonicities. To this end, a student modeling system should always make 
belief revisions to keep data for inference consistent. Surprisingly, however, 
only Huang et al. (1 99 la; 1991b) have tackled this problem, except that Woolf 
et al. (1993) have pointed out its significance. The authors have been attack- 
ing this issue and developing an inductive student model inference algo- 
rithm HSMIS (Kawai et al., 1987; Mizoguchi et al., 1987; Mizoguchi et 
al., 199 1). HSMIS (Hypothetical Student Model Inference System) employs 
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the ATMS (Assumption-based Truth Maintenance System) (deKleer, 1986) 
to maintain consistency of the student modeling process (Ikeda et al., 1988). 
The architecture of HSMIS is based on a logic-based inductive inference al- 
gorithm SMIS (Ikeda et al., 1989), whose model description language is also 
a logic-based language called SMDL (Student Model Description Language) 
which takes four truth values to represent a student's understanding. This 
paper first discusses the characteristics of contradictions and nonmonoto- 
nicities observed in the student modeling process. Then a student modeling 
architecture to deal with those nonmonotonicities is presented, after SMDL 
and SMIS are defined. Thus HSMIS realizes relatively high model represen- 
tation power and modeling ability. 

The second problem, that is, to capture a student's contradictory 
knowledge as it is, seems more important from educational viewpoints. The 
Socratic method, for example, is a contradiction-based tutoring strategy 
which teachers use especially to help students in the fixing stage. It is a well- 
known and already verified method that gives such a student a strong im- 
pression that he misapplied his knowledge. Although building high-fidelity 
student models is an intractable problem (Self, 1988), an ITS should have a 
student model which is precise enough to handle tutoring strategies inte- 
grated into the ITS (Diller~bourg, 1989). In order to generate sophisticated tu- 
toring behavior like the Socratic method, student modeling methods should 
be able to cover a student's contradictory knowledge. His knowledge acqui- 
sition and fixing processes should be captured by modeling him as he is, 
even if he has contradictory knowledge (Kono et al., 1992; Kono et al., 
1993b; Kono et al., 1994a). 

Some might say that some ITSs, for example, WHY (Stevens et al., 1977), 
have realized the Socratic method. Tutoring behaviors generated by most 
Socratic tutors, however, do not notice or suggest contradictions that exist 
inside a student in spite of the fact that such a suggestion is the real behav- 
ior of the Socratic method. They only give a new negative example of his 
knowledge. They do not realize the real and complete Socratic method. HS- 
MIS is equipped with a mechanism to cope with all the contradictions of 
type (1) which are formulated in this paper. HSMIS generates student mod- 
els in SMDL which has more expressiveness than Horn clauses. Therefore, 
HSMIS realizes a high modeling ability and model expressiveness which sur- 
passes most other modeling methods. 

This paper presents a new methodology for handling a student's con- 
tradictory knowledge in conjunction with Socratic tutoring based on the 
concrete foundation of student modeling. It is difficult for not only modeling 
systems but also human teachers to distinguish the two types of contradic- 
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tion, that is, one where a modeling system should treat the student's knowl- 
edge as contradictory and the other where the system should follow the stu- 
dent's nonmonotonic change, because all of their indications are very simi- 
lar. Two types of contradictions are formulated. Type (1) is named "single 
world contradiction" which is coped with by HSMIS, and type (2) is named 
"multi-world contradiction" which is coped with by the structure of a con- 
cept discrimination tree. The two methodologies, HSMIS and a multi-world 
inference mechanism, are successfully incorporated into the architecture of 
THEMIS by enumerating and equipping domain independent heuristics to 
distinguish the two types of contradiction. In the newly formulated THE- 
MIS, ATMS plays another important role of managing multiple worlds which 
enable the modeling of students with contradictions. 

First, this paper classifies and formulates the above two types of contra- 
diction which should be dealt with in student modeling. HSMIS, a nonmono- 
tonic inductive student modeling system, which is able to cope with single 
world contradictions is then formulated. Next, a mechanism which copes 
with multi-world contradictions is formulated, which is incorporated into 
THEMIS based on HSMIS. Finally, THEMIS is evaluated and compared with 
other representative systems. 

CONTRADICTIONS IN STUDENT MODELING 

A student's answer to a question is represented by a pair of a fact and 
its truth value and is called an oracle. The student modeling problem can be 
formulated as an inductive inference problem, i.e., a problem of constructing 
a model explaining observed data. A set of oracles acquired by observation 
of a student's behavior within a certain period tends to be inconsistent for 
several reasons. Such inconsistent behavior is classified into the following 
three types of contradiction according to the causes of them: 

[AlIOracle contradictions caused by change of student's mind: A stu- 
dent's learning process is essentially attained by acquiring new knowl- 
edge causing change of his mind. The consistency of his answers with- 
in the whole learning process can be easily lost, because he behaves 
based on his current knowledge independent of his previous knowl- 
edge. 

[A2]0racle contradictions caused by slips: A student often makes careless 
mistakes. Oracles based on them are inconsistent with his actual knowl- 
edge, hence, the set of oracles that contains slips is inconsistent. 
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[A3]Student knowledge contradictions: A student sometimes has inconsis- 
tent knowledge in his head which also causes contradictory oracles. 

These three kinds of contradiction are referred to as "student contradic- 
tions," since they are related to nonmonotonicities of a student's behavior 
or knowledge. 

The student modeling process is essentially hypothetical; hence, the 
completeness of an inferred student model is not always guaranteed. The ex- 
pectation of a student's answer deduced from the current student model is 
often different from new oracles, when the current model does not complete- 
ly represent his current status. Assumptions which were assumed when the 
current model was inferred become inconsistent with the set of oracles. Such 
a type of contradiction is called [B] assumption contradiction in modeling. 

Contradictions of type [All, [A21 and p ]  should be placed in the same 
category when classlfling them according to how to treat them, because all 
of them should be resolved by revising the current student model. On the 
other hand, contradictions of type [A31 should not be resolved, but a stu- 
dent's contradictory knowledge should be represented as it is so as to utilize 
them effectively in tutoring. 

Some examples of student knowledge contradictions are given in the 
next subsection, and a formulation of the contradictions is made based on 
the multi-world logic in subsequent subsections. All types of the above con- 
tradictions in student modeling are then classified and discriminated from 
the viewpoint of how they should be handled in the student modeling pro- 
cess. 

What is a Student Knowledge Contradiction? 

Let us assume that a student is in the stage of acquiring a certain new 
concept and that he has not fully discriminated it from other related con- 
cepts he has already acquired. Such a student is apt to behave unstably in 
applying knowledge to solve problems which contain the undifferentiated 
concept. Figure 1 indicates the behavior of a student who has undifferentiat- 
ed concepts, that is, the concept of "uniform motion" and the concept of 
"uniformly accelerated motion." He correctly calculated the location of P in 
Question 1, which specifies the type of motion as "linear and uniformly ac- 
celerated motion." In Question 2, however, he mistook a uniformly accelerat- 
ed motion for a uniform motion, and so applied problem solving knowledge 
for uniform motion. Such a situation occurs due to his confusion between 
the two concepts. As a result, his problem solving ability becomes unstable. 
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Figure 1. Examples of behavior of a student who has undifferentiated concepts 

Question 1 
A aplrere Ir;u pa.sseil t l ~ r n ~ ~ f i l ~  tlkc ori511 wit11 vc- 
locity l'J.G~rr/x lo tile rig111 at 1 = O*. It col~t i l~~lca 
lilrear aucl rraifor~lrly accclcrarctl ~nr>tiolr ;rlor~:: I- 
axis of a llorizo~~tal plallu. ;illd stopped ;it t = 2s. 
It I~ILSS = ?kg. Get it# clisl~lnr.crr~et~t at t = Is. 
Deter~r~ir~e hot11 the tlirectio~i ;iricl t l ~ c  t~ri~grrit~~tlc 
of the ;ipplicd force. 
Student 's  answer 

0-19.6 - ,,=H=- 2-U - -~ .SI I I /S=  

S, = Su+,)ot+ t a t2  = 0+13.Grl+ & = 14.7 
T l ~ c  disl>lacc~ner~t is 14.7~11 fronr t l ~ ~  a r i a i ~ ~ .  
F = rrbn = 2 r -9.8 = -13.6kg.~n/r2 

A student can choose certain problem solving methods appropriate for 
the problem given, if he has well-discriminated concepts and has adequate 
knowledge of their attributes. If he has not, however, he might misapply a 
procedure which belongs to another world by taking no notice of particular 
attributes of the problem. For instance, methods to "calculate the location of 
a moving object" are associated with both concepts, such as uniformly ac- 
celerated linear motion (St = So + vot + at212 or St = So + (vo + vt ) * 112) and 
uniform motion (S, = So + vt). In solving Question 2 in Figure 1, he retrieves 
the method defined in the concept of uniform motion, while he should apply 
the method defined in the concept of uniformly accelerated linear motion. 

A more interesting example of student knowledge contradiction is found 
in Question 3 in Figure 1. The student who had correctly calculated the force 
that the sphere receives in Question 1 could not determine the correct direc- 
tion of the force in Question 3 in spite of the fact that the two motions are 
physically identical except for the direction of the motion. 

Such conflicts among his answers suggest the "multi-world inference" 
assumption that he partitions his whole storage and inference space. Each 
small partition in his inference space with relevant storage is called a 
"world." He stores problem solving methods and rules which he can handle 
at once in each world. He can retrieve and utilize these methods in a certain 
world, only when he makes inferences in the world. A contradiction can be 
found when he utilized two different worlds in solving problems. One is the 
world of well-formulated physics for Question 1 in which he stores the 
knowledge learned through the curriculum of physics-for example, forrnu- 
las and definitions-and another is his naive physical world for Question 3 
which has been deeply engraved on his memory since his childhood, for in- 
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stance. He has a "motion implies a force" misconception (Clement, 1982) in 
the naive one in this case. It is inconsistent with the knowledge for "uni- 
formly accelerated motion" in the well-formulated one. He has answered that 
the force is directed upward because he used the naively misconceptualized 
world. 

"Student knowledge contradictions" are defined in this paper as the sta- 
tus which causes behaviors which can be regarded as a contradiction 
viewed from the standpoint of an observer. A typical interpretation of con- 
tradiction is as follows: 

He places more than two series of problem solving methods, which are 
originally placed in different worlds of concepts, in the same world re- 
gardless of their attributes. This is caused by his failure in differentiating 
them from each other. 
He makes decisions which are able to derive different truth values for a 
certain fact within a limited time, since his knowledge is unstable. 

Formulations of Student Knowledge Contradictions Based on the 
Multi-World Logic 

Here we discuss a formulation of student knowledge contradictions 
based on the concept discrimination structure and multi-world logic men- 
tioned in the previous subsection. It is an intractable problem to try to model 
a student's inconsistent knowledge in a single reasoning space, since it can- 
not represent contradiction. This suggests we need another modeling para- 
digm which is able to cope with inconsistency. 

The formulation is based on the authors' speculation that human beings 
partition their whole storage and inference space into multiple ccworlds" and 
organize them in a discrimination tree to retrieve their knowledge efficiently 
by: 

1: first retrieving which world (concept) the given problem belongs to along 
a certain discriminating structure, and 

2. retrieving and executing methods that contribute to problem solving in 
the world corresponding to the problem. 

The first step, the decision on the target world, is regarded as a search 
on a concept discrimination tree as depicted in Figure 2. Each node of a dis- 
crimination tree corresponds to a concept and each leaf node to a world. 
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When a problem is given to the current model, the discrimination tree in the 
model is at first interpreted to retrieve the conceptual world the problem be- 
longs to by searching the tree from its root. The searching and retrieval pro- 
cess is called discrintination level reasoning. The second step is regarded 
as a search for and execution of methods that contribute to solving the prob- 
lem. A set of problem solving methods is defined inside each world. Method 
level reasoning is thus carried out in the retrieved world, each of which con- 
sists of consistent knowledge. Contradiction is modeled as a mixture of mul- 
tiple worlds which is caused by an incorrect discrimination tree structure. 
Roughly speaking, therefore, student knowledge contradictions are repre- 
sented as wrong concept discrimination conditions, while conventional 
bugs are represented as wrong methods inside each world. 

Problem solving knowledge is represented as a set of predicates whose 
formula is either solve (G, 2 in, X" ,) or goa~(R in ,T ,,). G denotes the goal 
of the problem, that is, what should be determined under what constraints. 
X" in is a vector of input variables which are instantiated and 2 out is a vec- 
tor of ouput variables which are not instantiated when the predicate is 
called. { X in , X" .,) represents whole the articulation of the problem space. 
For instance, the problem space "motion" is represented as 
{m, (s(t),ASL (v(t)A $3 (a(')#' a),(f(t)9A3 [(To,So: "o,ao,Fo) ,: *.I 1, where the ele- 
ments are the mass of the moving object, location , velocity, acceleration and 
applied force as functions of time elapsed, and sets of the elements of the 
motion, respectively. Each function of time elapsed is denoted as a couple of 
the function itself and the attribute of the function. The problem space, 
which is adopted in Question 1 in Figure 1, is represented as 
f 2,(s(t)).(v(t)),(~(t)~J~~d),(RI)),[(2,So,(o,o),a9,Fo),(O,(O,O),( 19.6,0),a1,F1)l 1. 
When the problem solving begins, input variables are given in the formula 
as instantiated variables. For instance, the location and the velocity on t-0 
are instantiated as (0,O) and (19.6,0), because they are given in the problem. 
Problem solving is a retrieval and an execution of methods described in the 
problem solving knowledge base, to get the output parameter list {X" ,) in- 
stantiated from the given input parameter list { X in). 

The given problem is represented as a vector of primitive attributes 
which is used for deciding the worlds the problem belongs to by tracing the 
given tree from its root. Each conceptual node on the tree that is not a leaf 
node has no problem solving methods but discrimination knowledge, 
which defines what children nodes the node has and what conditions the 
problem must satisfy to discriminate each child concept from others. The 
conceptual node Ni that has children concepts N,,.-Nq has discrimination 
knowledge d(N,,[Nil,*--,Nv],[Cil,*..,Cij]) in general. To go forward through the 
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path from Ni to Nk(15 k 5 j )  requires that (2 h), input variables of the prob- 
lem, should satisfy Cik, the discrimination condition for Nik In Figure 2(a), 
the discrimination knowledge d(Nl,[Wl, W2],[Cl,C2]) is defined for the con- 

I 
ceptual node Nl that has children worlds Wl and W2; for instance, to go from 

1 N, to Wl requires the problem to satisfy the condition C,. Let us assume that 

I Nl corresponds to the concept of "linear motion," Wl to "uniform motion," 
, and W2 to "linear and uniformly accelerated motion." Given the vector for 
I Question 1 in Figure 1, it traces a path on the tree from the root and reaches 
I 

I the world W2 via N1, because it satisfies the discrimination condition C2, for 
I example, constant (A,) which means "the acceleration is constant." In each 

I 
world, m(Wi ), a set of problem solving methods which belong to W, , is giv- 

I 
en. A method level student model-that is, model of the method set m(W, )- 

' corresponds to a conventional student model. When S,, the set of the I 
I worlds to which the given problem belongs, is identified, methods which 

contribute to solving the problem are retrieved and executed from the union 
of method sets, each of which is an element of S,. When only one world W2 
is retrieved, method level reasoning takes place inside the world; that is, 
problem solving methods are retrieved from )?I( W2) and executed. A discrimi- 
nation condition has a predicate formula, which is called a worldpredicate, 
and both C1 and C2 are world predicates in Figure 2. Each world predicate 
takes only input variables, that is, (2 ;,), as its argument. 

Student knowledge contradictions are modeled in terms of erroneous 
concept discrimination trees, because the student who has such an errone- 
ous tree cannot manage consistency in retrieving problem solving methods 
as mentioned above. Such kinds of contradiction can be modeled by errone- 
ous world predicates in the multi-world model. When a student has not fully 
discriminated concepts N, and Nlq(l 5 p < q 3) which are both children 
nodes of N. the discrimination knowledge of Ni in the student model for him 

1, 
is revised to be d(Ni,[Nll,~~~,NIP,~~,N, ,.-.,No], [Cl1,.-,C, v Clq,~~-,CIp v 

I 
I 

Clq,.-*,C,] ); that is, discrimination con itions for both NIP and Niq become 
I 

8 
C, v Ciq. Method level reasoning of the problem that belongs to any de- 
scendant worlds of either N, or Nlq takes place in the combined reasoning 
space m(Nlq@Ni ) such that &oth method sets rn(N@) and nt(NIq) are merged 
into it, where m&@) contains all the methods defined in all the descendant 
worlds of N, and m(N!q) contains those of Nlq. The model of the student 
who has not fully discriminated uniform motion and uniformly accelerated 
motion, in the above example, is represented by the discrimination knowl- 
edge of N,, d(Nl,[ Wl, W,], [C,vC2,C1vC2]) as depicted in Figure 2(b). Method 

I level reasoning is done in the combined reasoning space m(?V1 @ W2). Such 
model representation and interpretation enables the capture of his unstable 
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discrrmination 

method level reasoning 

d(No, [.-.,NI,...], -.-) d(No, [.-.,NI,...], ...) 
d(N1, [W~,WZ], [C1,C2]) d(Ni, [Wi,W2], [Ci UCZ, Ci u C2]) 
m(W1, [ m: rn: rn: in: 1) ~ (w,@wz,  [[ "'l rnl ] @ [ m: m i  11) 
m(W2, [ m: rn: m: m: 1) rn, m, m: rn. 

(a) (b) 

Figure 2. Concept discrimination tree 

applications of knowledge. When he becomes able to discriminate these 
concepts, the discrimination model is revised again to be correct and method 
sets that had been combined since then are restored. 

Figure 3 illustrates a few instances of simplified student models. Each 
predicate written beside each arc of the tree-for example, 
solve - in - naive world-is the world predicate which discriminates the child 
conceptual nodes of the parent one. The student model for a student who 
has not yet discriminated between uniform motion and uniformly accelerated 
motion is illustrated in Figure 3 (a). World predicates for these concepts are 
revised to be uniform rnotion(8 ,)v uniformly accelerated-motioi~(G). 
Figure 3 (b) represents the status of the student who has the "motion implies a 
force" misconception in his naive world and unstably applies it in solving 
physics problems. World predicates for the naive world 
"solve - in - naive world (2,)'' and that for formulated worlds 
"solve - in_/or~latedworld - ( are both revised to be 
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solve informulated world(y ,) v solve - in - naive - world (2 ,,,). Al- 
though students' undifferentiation of concepts is represented by the dis- 
junctive of world predicates as is explained above, conventional bugs are 
represented by wrong methods in a certain world. The student who has 
wrong knowledge, say knowledge for calculating location of the object that 
is moving linearly and uniformly, is modeled so that there exists at least a 
wrong method-for instance, ''Sf = Vo* t" in place of "St = So + Vo*t9'- in 
the world of uniform motion. 

More detailed multi-world model descriptions are given in Figure 4 us- 
ing the geographic domain. The domain is structured aiming to make a stu- 
dent understand that climates of seaside regions are different between the 
Southern hemisphere and the Northern hemisphere because of the effects of 
sea currents. The whole correct model except knowledge of instances (cor- 
rect facts) is given in Figure 4(a). The conceptual node "earth is the root of 
the discrimination tree and has two children worlds "southern-hemisphere" 
and "northern - hemisphere." World predicates "southern-hemisphere(~1ace)" 

Figure 3. Interpretation o f  the student contradiction 

and "northern-hemisphere(P1ace)" are given for discrimination conditions. 
Each input variable, that is, Place, is bound to a name of the region and the 
discrimination knowledge evaluates which world the region belongs to. If a 
region is in the Northern hemisphere, world predicate northern-hemisphere 
(Place) indicates true and world northern-hemisphere is selected. Method 
level student models are actually represented in SMDL which is an extended 
version of Prolog and is formulated later, though they are written in Prolog in 
the figure. In each clause of method level models, only the last parameter, 
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the truth variable, is the output variable, and all other parameters, that is, 
Crop and Place, are input variables. The correct method level student model 
of the world southern-hemisphere consists of two clauses, which mean 
"The Crop grows in a certain Place, if the temperature, the soil, and the lay of 
the Place is suitable and there exists enough irrigation," and "The tempera- 
ture of a certain Place is suitable for the Crop, if the Place is the middle lati- 
tudes," respectively. The correct method level model of the world 
northern hemisphere is additionally given a clause that means "The temper- 
ature of ;certain Place is suitable for the Crop even if the Place is in relatively 
high latitude, if the Place is on the west cost of a continent," because warm 
currents and wind from the west bring such regions a warm climate in the 
Northern hemisphere. 

The discrimination knowledge of the student model in Figure 4(b) is re- 
vised from the correct one (underlined); that is, both world predicates for 
southern - hemisphere world and northern - hemisphere world are 
southern-hemisphere(P1ace) v northern-hemisphere(P1ace). Such a representa- 
tion of the discrimination knowledge denotes that the student has not yet 
correctly discriminated the two worlds. Given a problem on this subject, for 
instance, "Does wheat grow in the southern part of Chile?," both of the dis- 
crimination conditions indicate true, so the student model interpreter gener- 
ates a combined method set of the two worlds. Then the model in the 
southern-hemisphere world correctly returns false, but the model in the 
northern - hemisphere world returns true which causes a contradiction. 

Classification and Handling of Contradictions 

Contradictions enumerated at the beginning of this section are classi- 
fied by their causes into two categories: 

1. Student contradictions ([All [A21 [A3]), 
2. hiodeling contradictions ([B]). 

Student contradictions are caused by inconsistencies of a student's be- 
havior or his knowledge itself. On the other hand, modeling contradictions 
are caused by inconsistencies between the knowledge that a student actual- 
ly has and the knowledge that is represented in the student model. This clas- 
sification is summarized in Table l(a). 

Next, let us classifL these contradictions from the viewpoint of how 
they should be handled in student modeling. This classification is summa- 
rized in Table 1 @). 
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dcearth. Csouthernhemisphere. northernhemisphere]. d(earth. [southsrnhemisphsre. northsrnhemispberel . 
Csouthern4emiaphere(Place). ~ s o u t h a r n h e m i r p h ~ r e ( P l a c e ) V n o r t h e ~ i p h e r a P l a c .  
northernhemisphers(Plac.)l). southernhsmisphere(Place)Vnorthemhemiaphere(Place)l). 

m(aouthernhemisphere, [  southernhe hemisphere, [ 
(grov(Crop, Place. T) : - (grou(Crop. Place. T )  :- 

suitable-temperatur.(Crop, Place, TI), suitable_temperatur.(Crop , Place, TI ) , 
suitablesoil(Crop. Place. Tl) , suiteble~oil(Crop. Place. Tl) , 
suitablelay (Crop, Place. Tl). suitablelay (Crop. Place. Tl ) . 
has-irrigation(P1ace. T,) . has-irrigation(P1ace. Ti). 
and(T1 .T2 .TJ .Ti .TI). md(T1 .Tz .T, ,Ti .TI). 

(suitable-temperature(Crop. Place. T )  : -  (suitable-tomperatue(Crop, Place. T) :- 
middlelatitude(Placa, T))]). middlelatitude(P1aco. T) )I ) . 

m(nortbernhamisph*re. C m(northernhrisphere. C 
(grou(Crop. Place. T )  :- (grov(Crop. Place. T) : - 

suitablefemperatura(Crop, Place, TI). suitable-temperaturs(Cr0p. Place. TI 1.  
suitablesoil(Crop. Place. Tl) . ruitablesoil(Crop. Place. Tz) . 
suitablelay (Crop. Place. Tl). suitablalay(Crop. Place. Tl). 
has-irrigation(P1acs. T,) . haslrrigatxon(P1ace. T,), 
and(T1 ,T2 .Tl ,T4 ,T)), md(T1 .Tz .TI .T, .T)). 

(suitable~temperatura(Crop. Place. 7') :- (suitable-temperature(Crop. Place. 7') !- 

middlelatitude(P1ace. 2')). middlelatitude(Place, T)) . 
(suitable-tsmpereture(Crop. Place. T) :- (suitable-temperature(Crop. Placa, T) :- 

middlehighlatitude(P1acs. TI) . middlohighlatitude(P1ace. TI 1.  
uest~corst(P1ace. Tz) . uemt_coast(Place, Tz) . 
and(T1 .Tz.T))l). and(T1 .Tl .T))I). 

(4 (b)  

Figure 4. Examples of multi-world student model representatiot~ in Prolog 

An inconsistency between a student's actual understanding and a stu- 
dent model must be caused by faulty assumptions that were hypothesized in 
a previous inference stage and have been believed. A nonmonotonic stu- 
dent modeling process is required to get rid of these inconsistencies, that is, 
to revise the student model so as to be consistent with the student's knowl- 
edge: 

1. Set up assumptions that are necessary to construct the student model 
which satisfies the set of given oracles in each phase of student model- 
ing, 

2. Derive the model from these assumptions and record the derivation pro- 
cess, 

3. When a certain inconsistency between the oracle set and the model is 
detected, find a set of assumptions which causes the inconsistency, 

4. Resolve the contradiction by revising the system-made assumptions in 
the set and continue the modeling. 

Considering each oracle as an assumption, the above nonnlonotonic 
modeling methodology to resolve the inconsistencies is applicable to con- 
tradictions of types [All and [A2]. Oracles that are not consistent with a 
student's current understanding should be removed from the current as- 
sumption (oracle) set. A student model that is consistent with a student's 
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Table 1 
Classification of Contradictions in Student Modeling 

understanding can be constructed from the assunzption set manipulated in 
such a way inside a single world. Single world contradiction is a general 
term for these types of contradictions, that is, [All, [A21 and [B], which a 
modeling system should try to build a consistent model of in a single world 
by finding an appropriate set of oracles (assumptions). 

The above four steps of the belief revision process suggest that ATMS 
is appropriate for a core module of the controlling mechanism for student 
modeling. In ATMS-based problem solving systems, ATMS and an infer- 
ence system work in collaboration with each other. The inference system ex- 
ecutes problem solving and informs ATMS of its inference process. The 
consistency among data dealt with by the inference system are managed by 
ATMS. ATMS holds and revises a set of valid assumptions which is the ori- 
gin of the inference and derivation process of data by the inference system. 
When derivation of a contradiction is informed, ATMS calculates the set of 
assumptions which causes the contradiction by tracing back the informed 
derivation paths fiom the contradiction. When an assumption is denied, data 
which rely on it can not hold any more and hence are automatically denied 
by ATMS. In addition, ATMS is able to avoid redundant calculations which 
have previously been made, which is usehl to make the inference process 
very efficient. 

All the single world contradictions-that is, [All, [A21 and [B]-are 
dealt with by the same mechanism, which is realized by formulating the in- 
ductive student modeling process on the basis of ATMS in HSMIS. A de- 
tailed description of this topic is given in the next section. 
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In the case of student knowledge contradictions, i.e., type [A3], on the 
other hand, contradictions in his knowledge should not be resolved but 
should be represented as they are. As is discussed in the above two subsec- 
tions, such a type of contradiction is represented well on the basis of multi- 
world logic, and is called a "multi-world contradiction " in contrast with a 
single world contradiction. Based on the multi-world formulation, a student 
knowledge contradiction can also be defined as a certain kind of inconsis- 
tency which arises among some assumptions that have been assumed in the 
inference process in a manner similar to a single world contradiction. It is 
hence possible to capture a student's contradictory knowledge by formulat- 
ing its detectinglhandling methodology. 

The student modeling system THEMIS which is able to cope with multi- 
world contradictions consists of HSMIS and the controlling mechanism of 
multiple worlds. HSMIS makes inferences consistently in each world coping 
with and resolving single world contradictions. When a multi-world contra- 
diction is detected, HSMIS passes the control to the Multi-World Controller. 
It revises the concept discrimination tree of the given domain knowledge to 
represent the contradiction. A detailed description of this topic is given in 
the second next section. 

Heuristics to Distinguish Contradictions 

It is difficult for not only modeling systems but also human teachers to 
distinguish and detect the four types of contradictions-type [All, [A2], 
[A31 and [B]-which are the essentials in student modeling as already men- 
tioned, because all of their indications are very similar (Dillenbourg et al., 
1992; Self, 1993b). They are triggered by a difference between the expecta- 
tion of the student answer deduced from the current student model and his 
actual answer. One of the research goals of this paper is to produce a gener- 
ic and formulated modeling mechanism which is able to cope with these 
kinds of contradictions. Although a generic methodology to distinguish 
them is not fully developed, some heuristics are employed as shown below. 

Let us assume that the certainty of every given oracle and clause in the 
student model can be available. Both single world contradictions and multi- 
world contradictions are detectable by quite similar triggers, i.e., the expecta- 
tion from the model and the actual oracles. The contradiction resolving pro- 
cedures of those contradictions are quite different from each other. Single 
world contradictions need to be resolved by revising the set of oracles or 
the current model in general. The contradiction resolution procedure for 
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each type of single world contradiction is a bit different, and hence the de- 
tection processes for them are different from each other. In the heuristics, 
multi-world contradictions are first distinguished from single world contra- 
dictions. 

Student knowledge contradictions, type [A3], should not be resolved, 
because the student's inconsistency should be modeled as he is. Student 
knowledge contradictions require the revision of neither the oracle set nor 
the clauses that are inconsistent with oracles, but the discrimination struc- 
ture to permit it to contain the inconsistency. Such a difference in treatment 
of multi-world contradictions and single world contradictions suggests the 
following way of discriminating them. If either the certainty of a clause which 
is inconsistent with valid oracles or certainties of some of the oracles are 
less than a certain threshold, the inconsistency should be considered to be a 
single world contradiction and hence should be resolved. On the other hand, 
if all the certainties are high enough, the inconsistency is considered to be a 
student knowledge contradiction. They are not revised but put into some 
worlds; that is, all the reliable data can be alive in the multi-world formula- 
tion. The following heuristics to detect contradictions of each sub category 
of single world contradictions are incorporated. 

The change of student's knowledge which causes type [All of contra- 
dictions occurs especially right after his errors are corrected. He then gener- 
ally changes his understanding from an erroneous to a correct status. It is 
appropriate to apply revision procedures for type [All when correct oracles 
are obtained right after tutoring, that is, the system resolves the contradic- 
tion by excluding the past oracles inconsistent with correct clauses or by 
asking him truth values of the oracles. The revision of oracles results in the 
revision of the model; erroneous clauses are dismissed and correct clauses 
are appended. 

Independently of the correctness, generally speaking, the student 
ought to have consistently applied the clauses that are inconsistent with 
newly obtained oracles throughout a certain period, in the case that he 
makes careless mistakes which cause type [A21 of student contradictions. 
Thus such a type of contradiction is detected by similar criteria as those for 
student knowledge contradictions; that is, the inconsistent oracles and 
clauses would be both reliable enough. There are two ways to distinguish 
them; one is to consider a situation as a type [A21 only when the situation 
could not be treated as a student knowledge contradiction, and another is to 
ask him a very similar question to get a confirmation. 

These contradictions can be more sufficiently distinguished by intro- 
ducing and enriching domain dependent heuristics-for instance, "Students 
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tend to mistake a uniformly accelerated motion for a uniform motion if the 
motion is vertical"-in addition to the domain independent heuristics ex- 
plained above. 

There is one more point which should be considered in designing a stu- 
dent modeling system. It can be assumed that there exists a student who 
hardly behaves consistently, because of his low ability or the system's inap- 
propriate selection of the level of task. It does not make sense to let such a 
student complete the current task. It is possible to detect such a status of 
the student by diagnosing the past record of acquired oracles. In such cas- 
es, the modeling system should give up modeling him and inform the moni- 
tor of the failure so as to let the student go back to elementary tasks. 

NONMONOTONIC STUDENT MODELING IN A SINGLE WORLD 

On the basis of the above conceptual-level discussion on contradic- 
tions in student modeling, this section proposes a powefil nonmonotonic 
inductive student modeling methodology which is able to cope with single 
world contradictions. Student models have to satisfy the following require- 
ments in addition to the requirements for the nonmonotonicities already dis- 
cussed: 

1. Accuracy-cost trade08 In general, the more accurate the student model 
becomes, the more effective the behavior of the system becomes. How- 
ever, there exists a tradeoff between the accuracy of the model and the 
cost of constructing it. From a pragmatic viewpoint, we must set up an 
appropriate representation scheme for student models by taking the 
tradeoff into consideration. 

2. Unknown assertions: When a student fails to deduce his own solution 
for a problem, he would say to his teacher "I could not solve the prob- 
lem." Needless to say, this assertion does not mean he does not have 
any knowledge. The student model module should use this assertion as 
informative data about his knowledge and construct a model which ex- 
plains why he cannot deduce the answer from his own knowledge. This 
requires the student model to deduce "unknown" assertions. 

3. Theoretical foundation: Domain-independent and theoretical founda- 
tions for the student modeling mechanism should be defined. It contrib- 
utes to both the clarification of the inherent properties of the student 
modeling problem and to the articulation of the scalability and reusability 
of the proposed mechanism. 
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To meet these requirements, the authors have developed a student 
model description language SMDL and a hypothetical student model infer- 
ence system HSMIS. SMDL is an extended version of Prolog and takes four 
truth values including "unknown" to model the student precisely. HSMIS, 
an extended version of Shapiro's MIS (Model Inference System) (Shapiro, 
198 1, 1982), is an inductive inference system for SMDL. In HSMIS, ATMS: 
Assumption-based Truth Maintenance System (deKleer, 1986) is employed 
for dealing with nonmonotonicities. HSMIS has been implemented in Com- 
mon ESP (Exqended Selfcontained Prolog) on SPARC station (AIR, 1990). 

This paper briefly presents the formulation because of the space limita- 
tion. The complete formal definitions are given in (Kono et al., 1994b). 

SMDL: A Student Model Description Language 

In addition to the above requirements, a student model is required to 
represent not only students but also the systems' understanding of the stu- 
dents, which implies the model has to distinguish the two states: The system 
can predict the behavior of the student and the system cannot. When the 
model is based on logic, which is our case, it has to have two truth values, 
true and false, to denote the above two states, respectively. Needless to say, 
the former state, that is, the one corresponding to "true," should represent 
the student's logical state such as "true," "false," and "unknown" which 
stand for "the student believes a statement is true," "the student believes it 
is false," and "the student does not ascertain its truth," respectively. Then, 
we have two seemingly the same truth values "false," which can be discrimi- 
nated as follows: Employing Prolog terminology, the former "false" is treated 
as "fail" and the latter as one of the three values corresponding to "suc- 
cess." Discrimination among the three values is done by introducing an aux- 
iliary argument interpreted by a meta-interpreter. 

Facts are represented in SMDL as follows. 

These three facts represent "The student believes Paris is not in the torrid 
zone but in the temperate zone and does not know whether it is fertile or 
not." 

Clauses are written in the form of 
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A is called a head and the RHS of the clause is called a body. Some simplified 
examples are shown below. 

These two clauses show that the student thinks "If place X is in the temper- 
ate zone or in the torrid and wet zone then the plant grows in X." Intuitively, 
the clauses with the same head have a disjunctive relation and the predi- 
cates in the body have a conjunctive relation. Given a goal grow(paris,T), the 
SMDL interpreter calls the subgoals temperate(paris, TI), torrid(paris, T,), and 
wet(paris,T3) in this order. The truth value T of grow(paris,T) is obtained ac- 
cording to T = T4 v Tj = TI v (T2 A T3) = true v wise A unknown). The se- 
mantics of the logical operators " A " and "v " are shown in Table 2. 

The predicate of SMDL is of the form p(X1,X2,-.,Xm ,T), where p is a 
predicate name and Xi (1s i I m) is a variable. From now on, a sequence of 
variables, for example Xl,X2,--,Xm , is abbreviated as ? . T is a truth variable 
or one of four truth values. 

An SMDL clause is of the form: H::-BIB2, ..., B,,, n 2 0, where H, B, ( l I  i 
I n) are predicates. In the case of n = 0, it is called a fact. The SMDL pro- 
gram P is a finite set of clauses. 

The execution process is defined as two different forms: weak-resolu- 
tion and strong-resolution. The former is like the execution process of Pro- 
log; that is, "a goal succeeds in weak-resolution if there exists at least one 
clause which derives the goal." On the other hand, strong-resolution is 
somewhat different and complicated. Roughly speaking, a goal with truth 
value T succeeds in strong-resolution, if all the OR clauses unifiable with the 
goal succeed and the result of the OR evaluation is T. Generally speaking, a 
goal with truth value true can be weakly derived but a goal with another 
truth value needs to be strongly derived. For instance, a goal grow(paris,T) 
succeeds in weak-resolution with truth value true by executing only the first 
clause, if a subgoal temperate(paris,true) succeeds. On the other hand, a goal 
grow(antarctica,T) needs to succeed in strong-resolution with truth value 
false by executing both clauses to call the subgoals temperate(antarctica,T,), 
torrid(antarctica,T2) and wet(antarctica,T3), whose execution results are false, 
@lse, and true, respectively, and to obtain the truth value of the goal accord- 
ing tofilse v (true ~fi lse) .  
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Definition of A and v 
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SMIS: Inductive Student Model Inference System 

(a) A opcri\t.or (h) V operator 

Figure 5 shows the block diagram of THEMIS. HSMIS, the core module 
of THEMIS, consists of SMIS (Ikeda et al., 1 989), ATMS (explained below), 
The Virtual oracle generator (also explained below) and the Contradiction re- 
solving system (CRS). The main task of ATMS is to manage the consistency 
of a set of assumptions (environment) used by the problem solver, SMIS in 
our case. The Virtual oracle generator is responsible for improving the per- 
formance of model inference by generating assumed student answers based 
on the reliability of the student without asking the student questions. CRS 
resolves the inconsistency identified by changing the environment. 
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A pair of a problem and an answer to it is called an oracle and is used as 
data to be covered by the model obtained. An oracle is of the form 
< p ( R  ',T),T ' >,where ' is a sequence of ground terms, T is a truth variable 
and T' E ( true, false, unknown ). Because fail represents the system's un- 
derstanding of the student, it cannot be the truth value of an oracle. A set of 
oracles given to the system is called an oracle set and denoted by a. 

SMIS applies the following procedure repeatedly to the model: 

1. If there is a difference between an oracle and the fact derived from the 
student model, activate the student model diagnosis system, SMDS, to 
identify the cause of the difference. 

2. According to the diagnosis, SMIS selects an appropriate operation, ei- 
ther removal of an -refuted clause or addition of a new clause, and in- 
forms ATMS of the process. 

Table 3 
Activation of SMDS Subprocedures 

Student model diagnosis system. SMDS traces the resolution process of 
the current model and checks the results with oracles. SMDS has three sub- 
procedures, that is, ip , fp and failp. The procedure ip finds out where a new 
clause should be added. The procedure fp detects an -refuted clause 
which should be removed from the model. The procedure failp dynamically 
decides which procedure,& or ip, should be activated. SMDS selectively ac- 
tivates one of them according to the difference between the oracle's truth 
value and the one derived fiom the student model (see Table 3). 

Let us assume that there exists an oracle H= <p(R ' ,T),T ' >, a clause C= 
p(X ,~ ) : : -q , (y  ,,T,), q2(y  2,~t),".74k ( 2  k , ~ k  1, and the set of oracles 
q l ( x  ',,T I,), q,(X b T  ',),.-,q,(~ 'J that derives p ( x  ', T ' ) with C. The 
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set of oracles is called a top-level-trace of C for H. A simplified but concrete 
example of a top level trace is shown in Figure 6, where the oracles O,;.*,O, 
correspond to student's answers (a) through (f), respectively. In this case, 
the clause C covers 0,, where the toplevel trace is made by O2 and 03. 

Figure 6. Examples of the top-level trace and the refutation for a clause 

I grow(Plant,Place,T)::- 
C suitable-temperature( Plant, Place,T~), 

suitable-soil( Plant, Place,Tz). 

y...7.....,....." ............ 
101 1s covered by C , where the 
i (suitable-ternperat~~e(riee,o~aka) 

made by 0 2  and 03. 

# 
suitable-soil( rice, egipt, true) ). ). 

Let us assume that there exists an oracle 07:~grow(rice,kiev,T7), true>. 
The top-level trace of C for 0, can be made, if there exist the following two 
oracles: 

0,: ~suitable~temperature(rice,kiev,T,),true~ and 
09: <suitable-soil(rice, kiev, T,),true>. 

01: <grow(rice. osaka. Tt). true, 
0 2 :  <suitable-temperaIure(rice, osaka. Tz). true.> 
0 3 :  <suitable-soil(rice, osaka. Ts), true.> - -.- .,... -A.<>-".,,-..v ,+., -.-..: 
(a) Does rice grow in Osaka? 
(b) In the temperature of Osaka suitable for rice ? s 
(c) Is the soil of Osaka suitable for rice ? 

However, when there exists an oracle O I,: <suitable-temperature 
(rice,kiev,T',), false, instead of 0, and there are no OR clauses unifiable with 
the goal O,, O, cannot be weakly-derived from the current model. In such a 
situation, the model P is said to be too weak with respect to a goal 0,. 
When a weakness is detected in P, ip is activated and it searches for the 
cause of the weakness by proving each clause in the proof tree of the oracle. 

Figure 7 shows a Prolog implementation of ip. The goal good-oracle-top 
( p(X ,7), T ', Body, Tb) finds a clause p(X ,T): :- Body E P which has a cor- 
rect top-level trace. If such a clause does not exist, the goal p(X ,T' )is un- 
covered by P and returned as an output by ip. Otherwise, ip is recursively 
called. 

04: <grow(rice, egypl. T1), false, 
05: <suitabb~temperature(rice, egypt, T5), true.> 
06: <suitable-soil(rice, egypt. To), true.> - ....---<--- - 

(d) Does rice grow in Egypt? no, 
(el Is the temperature of Egypt suitable for rice ? 
(D Is the soil of Egypt suitable for rice ? ~ e s .  
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i p (  ( A , B ) ,  (Ta, T b ) ,  C ) :- 
w e a k l y - d e r i v e (  A ,  T a )  - i p (  B ,  Tb, C 1; 

ip( A ,  T a ,  C ) .  
i p (  A ,  T a ,  C ) :- 

g o o d - o r a c l e - t o p (  A ,  T a ,  Body, T b )  - i p (  Body ,  T b ,  C 1; 
C = [ ( A  , T a )  , u n c o v e r ]  . 

Figure 7. Prolog implementation of ip 

To cover the uncovered goal detected by ip, HSMIS searches for a new 
clause to add into the model. 

We define a binary relation " > " over truth values. When two clauses 
derive different truth values, T I  and T,, for a goal, we say TI  is stronger than 
T, ifTl = Tl v T, and write T, > T,. 

We say a model is too strong with respect to a goal if it has at least one 
clause which derives a stronger truth value than the oracle with respect to 
the goal. A too strong model has at least one $2 -refuted clause which has a 
refutation. In Figure 6,  the clause C is rehted by oracles 04,  O5 and 06. The 
R -refuted clause, which should be removed from the model as a cause of 
strength, is identified by the procedure@. 

Figure 8 shows a Prolog implementation of $. The goal refutation 
( p ( 2  ',T), T ', Body, Tb) finds the clause p(g ,T)::-Body E P which weakly 
derives p(2 ',Tg) such that T, >T '. The goal check-rehtation(Body, Ta, C ) 
checks each goal of the Body with R . 

f p (  A ,  T ,  C ) : -  

r e f u t a t i o n (  A ,  T ,  Body, T b ) ,  
c h e c k x e f  u t  a t  i o n  ( Body, Tb, ~ b )  , 
( Cb==ok 

- >  C = [ A :  :-Body, i n c o r r e c t ]  ; 
C = Cb). 

c h e c k z e f u t a t i o n (  ( A , B ) ,  ( ~ a , ~ b ) ,  C  ) :- 

c h e c k r e f u t a t i o n (  A ,  Ta ,  Ca) 
( Ca==ok 

-> c h e c k r e f u t a t i o n (  B ,  Tb, C  ) ; 
C = C a ) .  

c h e c k x e f u t a t i o n (  A, Ta ,  C ) :- 

o r a c l e (  A ,  T ) 

( g e (  T ,  Ta) 
-> C = o k ;  f p ( A , T , C )  ) .  

Figure 8. Prolog implementation of fp 
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Let us assume that check refutation@, ( 2  ',T,),T '. C) is activated un- 
der the condition that q , ( i  ZT;) is derived from P and >qi(H ',Ti)T ;> is in 
R . If T," i T. ' then the cause of strength should be found in the resolution 
process of q, (k ',,T,'). Therefore check-refutation calls ~ ( ~ ~ ( 2  ',T,),T 'I,, C) 
recursively. Otherwise it returns C=ok. 

The model P is said to be incomplete, if P derives the truth value fail to 
a certain fact which is contained in R .  The procedure failp identifies the 
cause of the inconnpleteness, which is either an uncovered goal or an R -re- 
futed clause. Figure 9 shows a Prolog implementation of failp. The procedure 
failp@(X ', 0, T I, C) is activated when the model P cannot derive p ( 2  ',T ') 
and q ( d  ',7),T '> is in . If P cannot weakly-derive p ( 2  ',T '), it calls 
ip(p(X ',n, T ', C). Otherwise, it calls f&2g2@(2 ',T ), T I, C). The procedure fp2 
selects the clause which derives p(X', fail) and finds a correct top-level 
trace of the clause. If the correct top-level trace derives p(Y ',Tg) and Tg > 
T ' then fp2 returns the clause as an R -refuted clause. Otherwise @2 calls 
fnilp for the body of the clause. 

failp( (A,B), (Ta,Tb), C ) :- 

smdl( A, fail ) 

-> failp( A, Ta, C ) ;  
failp( B, Tb, C ) .  

failp( A, Ta, C ) :- 

not ( weakly-derive( A, Ta) ) 
-> i p (  A ,  Ta, C 1; 

fp2( B, Tb, C 1. 
fp2( A, Ta, C ) :- 

smdl-clause( A, Body ) , 
smdl( Body, fail ) , 
good-oracle-top( A, Tg, Body, Tb), 
( le( Tg, Ta), failp( Body. Tb, C 1; 
( gt ( Tg, Ta) , C = [A: : -~ody,incorrect] ) ) . 

Figure 9. Prolog irnplemer~tation of failp 

Search for a new clause. A candidate clause to be added into the model is 
generated using the refinement graph which is defined by refinement opera- 
tors. The generation process is viewed as a kind of search on a dynamically 
generated tree. The refinement graph is rooted by a most general clause. Its- 
nodes correspond to candidate clauses and directed arcs c-&> C ' to the 
refinement operations applied to clauses. Typical examples of refinement op- 
erations include adding a predicate into the body and unification of vari- 
ables. The graph has the following important characteristic: 
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If the clause C does not cover a goal A,  then any C ' satisfling 
C+ C ' does not cover it either. 

This is used for pruning the unnecessary branches, which makes the 
search efficient. 

A refinement graph represents knowledge which enables an efficient 
search for a clause to be added into the model. However, it does not have 
any a priori knowledge of bugs. So, it always tries to find a clause from a 
fixed root, that is, the most general clause, independently of material. Note 
here that we can introduce the concept of bug when we know the material 
well. Given some typical bugs specific to the teaching material under consid- 
eration, the search procedure can begin searching from these bugs, which 
makes the search very efficient. 

ATMS 

This section briefly explains ATMS. 
The information given by the inference system takes a form of 

N,,& ,..., Nk =$D 
which means that the datum D is derived from a set of the data 

(N,f12 ,..., Nk). (N1,N2,.. .&) is called a jW1cation of D . 
The data dealt with in the inference system are classified into three 

kinds of data, i.e., premise data, assumed data and derived data. A premise is 
defined as a datum that can be true under any context. An assumed datum is 
one produced with an assumption that holds without depending on any oth- 
er data. A derived datum is one inferred from other data. 

Following each justification back from a certain derived datum finally 
reaches a set of assumptions and premises. That is to say, the set of as- 
sumptions that an individual datum depends on can be calculated. A set of 
assumptions is called an environment. It is one of the major tasks for ATMS 
to record justifications informed from the inference system and to calculate a 
consistent environment where the data can be inferred. When derivation of 
the contradiction is informed, ATMS calculates the nogood environment, 
which is the cause of the contradiction and recorded in ATMS (hereafter 
called the nogood record). Every environment included in the nogood record 
can be regarded as an inadequate combination of the assumptions. ATMS 
maintains the consistency of the inference process by using the nogood 
record. The inference system selects a new consistent environment, which 
does not include the nogood record elements, and continues inference. 
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A situation in the problem solving process is called a context, which is 
defined by the set of the data that hold in the situation. An environment de- 
riving all the data included in the context is called a characteristic environ- 
ment of the context. 

When the derivation of an inconsistency is informed, ATMS calculates 
and records the environment of I. The inference system ceases to solve the 
problem in the contradicted context and transfers to a new consistent char- 
acteristic environment. 

With regard to the nodes which have been derived before that time, 
ATMS determines whether each node holds (in) or does not hold (out) in 
the new characteristic environment. Thus a new context is composed with a 
set of in nodes. 

Managing Consistency to Control the Model Building Process 

Single world contradictions are formulated in a unified architecture in 
HSMIS by combining SMIS and ATMS. With the aid of the schematic dia- 
gram shown in Figure 5, the overall behavior of the system for single world 
contradictions will be made clear in this subsection. (a) Given student an- 
swers ("real oracle"), the Virtual oracle generator generates virtual oracles if 
necessary and passes them to ATMS with the real oracles. (b) SMIS informs 
ATMS of all the inference processes that are explained in detail in (Kono et 
al, 1994b). When a contradiction is informed, ATMS computes the label re- 
sponsible for the inconsistency based on the information given up to that 
point of time and stores it in the nogood record. (c) SMIS asks CRS to re- 
solve the inconsistency. (d) According to the cause of inconsistency identi- 
fied, CRS selects a new environment which is consistent by asking ATMS to 
check its consistency. (e) ATMS answers the queries by inspecting the 
nogood record and (f) passes the control to SMIS together with a new con- 
text supported by the new consistent environment. 

HSMIS tries to model the student from his behavior during which it au- 
ton~atically asks questions which contribute to the disambiguation of alter- 
native clause selection and diagnosis. In other words, HSMIS asks ques- 
tions regardless of their appropriateness in the sense of tutoring. This re- 
quires some control mechanism of the HSMlS behavior. The following addi- 
tional mechanisms are introduced to augment the HSMIS. 
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Virlual Oracles. Let us discuss the initial model problem. There are two al- 
ternative initial models: one is empty, which means the teacher does not 
know anything about the student in advance, and the other is complete 
knowledge (teaching material), which means she assumes that he usually un- 
derstands the material very well. Although the former case is reasonable, the 
system would tend to ask many questions to get sufficient information 
about how well he understands the material. On the other hand, the latter 
case does not require many questions, at least for excellent students, since 
the model can explain their correct behavior. This characteristic is very rea- 
sonable in real tutoring. The latter is employed. A serious problem still re- 
mains, however. One cannot simply put a clause into the student model 
without any justification. 

The Virtual oracle generator, which generates plausible student answers 
based on the certainty of the current student model instead of asking ques- 
tions, has been devised in order to cope with this problem. When a stu- 
dent's behavior is confined within the scope of his teacher's prediction, she 
asks fewer questions by replacing the necessary information with correct an- 
swers. This type of oracle is called a "virtual oracle." SMIS treats "real ora- 
cles" and "virtual oracles" in the same manner, while ATMS manages their 
consistency. 

When a clause supported by virtual oracles turns out to be no longer in 
as the inference proceeds, ATMS withdraws it and backs up to the point 
which causes the problem. 

Meta-Oracles. Students sometimes want to express their knowledge in the 
form of knowledge instead of facts. The system sometimes wants to ask the 
student the reason why he answers a question that way. The following is an 
example. 

System: Does rice grow in Russia? 
Student: Yes, it does. 
System: Why do you think rice grows in Russia? 
Student: It has wide flat fields and rivers. 

In this case, HSMIS can obtain an oracle and a clause as follows. 

<grow(rice, russia, T), true> 
grow(rice, Place) ::- 

flat-field(Place), 
river(P1ace). 

The clause obtained fiom the student is called a meta-oracle. 
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Assumptions to Cope With Single World Contradictions 

This subsection gives the formulation of assumptions to drive the 
mechanism mentioned in the previous subsection. The nonmonotonic infer- 
ence process of HSMIS is realized by controlling the status of the assump- 
tions representing various hypothetical decisions which are made during 
student modeling. 

Given a consistent oracle set 6 , SMIS is able to construct a student 
model which explains 6. That means SMIS is potentially able to c o p  with 
all the modeling contradictions in terms of SMDL, if an appropriate n is giv- 
en. In HSMIS, these modeling contradictions are formulated to be controlled 
by the following three types of assumption in the framework of ATMS: 

uncover(C,O) which represents that an oracle 0 can not be covered by a 
certain clause C. It holds unless cover(C,O) is derived. This type of as- 
sumption is used to prune branches in the refinement graph and to detect 
that the search turns out a failure. 
Q -eonsistent(C) which represents that a clause C is consistent with 6 , 
the current oracle set. It holds unless fi -refutation(C) is derived. Such a 
consistency is checked whenever 6 is changed by the mechanism. This 
type of assumption is used for revising the student model to follow 
change of 6. 
general(C) which represents that any ancestor clauses of C in the refine- 
ment graph which are more general than C are not contained in the cur- 
rent model. It holds unless an ancestor clause of C is added to the model. 
If an ancestor clause of C is added to the model, the clause C no longer 
holds in the model. 

In order to cope with two types of student contradictions, [All and 
[A2], which are both classified into the single world contradiction, it is nec- 
essary to update the oracle set itself, for example, to leave unreliable oracles 
out of consideration in modeling or to mod@ truth values of some of the or- 
acles which cause a certain inconsistency. This requirement means that t k -  
system should be able to generate the currently reliable set of oracles a, 
which is considered in model inference, from the whole set of given oracles 
W. The following type of assumption is formulated in addition to the above 
three types to meet the requirement. 
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oracle(0) which represents a question and a student's answer to it, that 
is, a "real" oracle 0. If the assumption oracle(0) is in, oracle 0 is in 6. 
This means the oracle is reliable at present. 

A modeling system must be able to realize more appropriate behavior if 
it copes with nonmonotonicities of a teacher's trust in student's knowledge 
and asks reasonable numbers of questions in the didactic sense. Contradic- 
tion of trust is formulated by incorporating the following assumption: 

trust(C) which represents that the system trusts the student to have the 
knowledge that corresponds to clause C. It is in unless R -refutation(C) 
is derived. Virtual oracles are generated based on this assumption and 
the oracle that is unifiable with C. The number of system questions is 
hence reduced without losing logical consistency of the modeling pro- 
cess. When this assumption becomes out, virtual oracles which were de- 
rived from it are automatically withdrawn, and the system asks the stu- 
dent the facts which Fad been trusted and have not been asked until 
then. 

SMIS deals with oracles and virtual oracles in the same manner. 

Detection and Resolution of Contradiction 

The contradiction derived in the inference process of HSMIS is classi- 
fied into the following seven types. 

S1) Contradiction of R -consistency 
S2) Contradiction of cover test 
S3) Contradiction of generality 
S4) Contradiction of trust 
S5) Contradiction of meta-oracle 
S6) Contradiction of oracle 
S7) Failure of search 

When any of the contradictions is detected, ATMS is informed of it and up- 
dates the nogood record. 

Among the assumptions which are formulated in HSMIS to cope with 
single world contradictions, Q -consistent(C), uncover(C,A), general(C), 
trust(C) and metaOracle(C) are called default assunrptions, which means 
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"they are assumed to be in so long as no contrary evidence is found." The 
set of these assumptions included in the environment is called a default en- 
vironment (denoted by D, ). From this, the current environment C, can be ex- 
pressed by 

Ce=De ufi 
Contradictions can be classified into (a) ones regarding the default envi- 

ronment and (b) ones regarding the oracle environment (corresponding to 

6). 

I) The resolution method for contradictions of the default environment can 
be easily derived from its definition. 

Suppose that a contradiction is detected since there exist both the l2 - 
refutatioii(C) and the R -consistent(Q in the current contest. As has already 
been stated, the l2 -consistent(C) can hold so long as there does not exist 
the refutation for the clause C, that is, R -refbtation(C). Therefore, the incon- 
sistency can be resolved by removing the R -consistent(C) from the default 
environment. Similarly, the assumptions, uncover(C,A ), trust(C) and metaO- 
racle (C) are removed from the default environment when the contradictory 
data is found. 

Q CRS generates consistent 8. The consistency is guaranteed to the ex- 
tent that it does not include any contradictions that have been found 
thus far. In other words, it may contain a contradiction found in the fu- 
ture. The operations carried out for the generation are: 

1. remove an oracle from R , 
2. modify the truth value of an oracle in R . 

CRS searches for a consistent fi in the ascending order of number of 
n~odifications from Ll . To improve the efficiency and educational validity of 
selecting the consistent oracle set which has the minimal modifications, 
some domain-independent heuristics are incorporated into the search proce- 
dure: Give priority to correct or recent answers, give priority to the oracles 
supporting the plausible clause which is supported by relatively many ora- 
cles, and so on. Domain-dependent heuristics may also be introduced. 
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Behavior of HSMIS 

An example of how HSMIS works is given in Figure 10, in which the de- 
scription is partially simplified because of space limitation; that is, the de- 
scription of teaching material is not correct in the strict sense (e.g., the first 
argument of grow is omitted). An example of the modeling process for a stu- 
dent knowledge contradiction is shown in the next section. 

In order to realize the behavior of HSMIS, at least two kinds of knowl- 
edge are required. One is the knowledge for refinement graph generation. In 
the above example, for example, the following knowledge is used for generat- 
ing three clauses C1, C2, and C3. 

declare - called(grow(Place, T),[temp(Place, Tl),soil(Place, T2)]) 

This means that the predicates in the second argument, tenip(Place, T1) and 
soil(Place,T2), can appear in the body of a clause whose head is 
grow(Place, 2'). If this form of knowledge including necessary predicates is 
prepared, HSMIS can automatically generate a complete set of clauses as a 
model of the student. 

The other kind is the correct domain knowledge which provides HSMIS 
with correct answers. In the above example, the knowledge is used for three 
purposes: generating virtual oracles, managing the environment, and gener- 
ating problems. 

In the above example, the student model changed two times. The first 
change from C1 to C2 can be regarded as corresponding to the nonmonoto- 
nicity inherent in the inference process; that is, Cl is not an appropriate hy- 
pothesis of the student understanding at that time. Meanwhile, the second 
change from C2 to C1 corresponds to the nonmonotonicity of student's un- 
derstanding. 

NONMONOTONIC STUDENT MODELING IN MULTIPLE WORLDS 

Inference Process in THEMIS 

This subsection discusses both the modeling mechanism and the for- 
mulation of the modeling process realized in THEMIS which consists of HS- 
MIS and Multi-World Controller (MWC). MWC uses HSMIS as a single 
world modeler capable of resolving single world contradictions. THEMIS is 
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Figure 10. An example of HMIS modeling process 

hence able to represent student knowledge contradictions according to the 
multi-world logic, maintaining the consistencies between model and oracles 
in each world. A formulation of the inference process is given in detail in 
(Kono et al., 1994b). 

Among student contradictions, the formulation of student knowledge 
contradictions is more complicated than formulations of the other two. The 
following two types of assumption are introduced to formulate student 
knowledge contradictions: 

belong(P, W,) which represents that the student is assumed to understand 
that problem P belongs to world kVi' 
discriminate ( W ,  Wj)which represents that the student is assumed to be 
able to correctly discriminate between the two worlds W, and Wj. 

When a correct assumption belong(P, Wi) is isin , the student is expected 
to be able to correctly apply a problem solving method, say, M,, which is in 
the world Wi of the current model. If he does not discriminate between kVi 
and Wj, however, it can happen that he applies Mj which belongs to W, to 
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the problem. A contradiction is derived from the assumptions belong(P, Wi) 
which is pre-assumed and belong(P, W, ) which is newly assumed to cover 
his faulty answer. Another contradiction is also derived from the assumption 
discriminate(I+", W,) and the datum indiscrhninate(W, W,) which is derived 
from assumption belong(P, $). In this case, oracles related to P are trans- 
ferred from Wi to ib; together with the belief revision of discriminate(W,, H:.) 
to be out and the system revises the discrimination conditions which dis- 
criminate the two worlds so as to resolve these contradictions. Thus the re- 
vised student model represents the student knowledge contradiction caused 
by his undifferentiation. 

Contradictions derived in the inference process of THEMIS are classi- 
fied into the following three types in addition to the contradictions formulat- 
ed in HSMIS: 

M1) Contradiction of belong 
M2)  Contradiction of discrimination 
M3) Contradiction of model prediction and oracle 

All these contradictions handled by MWC are resolved in a similar man- 
ner to contradictions of the default environment; that is, "the assumptions 
which were hypothesized in advance and which derived the faulty expecta- 
tion is denied to be out, when a contradiction is informed." The assumption 
belong which has been assumed becomes out in the case of type M1 contra- 
dictions. The assumption discriminate and the assumption belong which 
has derived an expectation of a student answer also become out in the case 
of type M2 and M3, respectively. 

Modeling Student Knowledge Contradictions 

The formulation of student knowledge contradictions described earlier 
works well as a student modeling method by utilizing the heuristics which 
are also mentioned earlier. MWC is incorporated into THEMIS to control 
multi-world inference. Concept discrimination trees are given in advance as a 
part of the domain dependent knowledge. MWC is given the whole set of 
worlds which are handled in one course of tutoring, and it manages the sta- 
tus of each discrimination condition in the tree and each set of oracles that 
belong to each world. MWC is able to retrieve all the clauses in a certain 
world which are unifiable with a certain oracle in the world with the help of 
ATMS. Model diagnoses and revisions can be done on the discrimination 
trees. In each world, the clause level student model is inductively inferred 
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from the oracles belonging to the world. It is realized by modifying the algo- 
rithm of the SMDL interpreter; that is, a clause C in a certain world W is unifi- 
able only with oracles belonging to W. Each clause level student model can 
be consistently inferred using such a mechanism. 

The construction process of the student model that represents student 
knowledge contradictions is as follows: 

1. The system assumes a student knowledge contradiction when newly ob- 
tained oracles are not satisfied by any unifiable clauses in the corre- 
sponding world in the model which are sufficiently reliable. 

2. The system tests whether the oracles are satisfied by the clauses that ex- 
ist in another world by visiting the worlds in turn in order of similarity to 
the correct world according to the structure of the tree. 

3. When a clause explaining the oracle is found in some world, discrimina- 
tion conditions that contribute to differentiation of the two worlds are re- 
vised as depicted in Figure 3. 

4. If no satisfiable world is found, the system considers the situation as a 
single world contradiction and tries to revise the model in the correct 
world. 

Such a decision is made based on the heuristics to detect a student 
knowledge contradiction mentioned earlier (subsection of "Formulation of 
student knowledge contradiction based on the multi-world logic"). THEMIS 
calculates the certainty of each clause in its clause (method) level student 
model so that it is able to apply the heuristics. The calculation is done by re- 
ferring to various kinds of information, that is, number of top-level traces 
that justify the clause, whether the oracles which consist of each top-level 
trace of the clause are correct answers or not, how old the oracles are, and 
so forth (Kono et al., 1993a). 

I, , the set of instances whose every element originally belongs to a 
certain conceptual world W, can be determined by applying Cw which is the 
world predicate of W to I, the whole set of instances in the domain. Clause 
level representations and oracles which justifj the model are generated and 
stored in each world individually. Suppose that there are two worlds W, and 
W, which are brothers and that they have already obtain and involved ora- 
cle sets 6, and 6,. Suppose also that clauses MI and M2 are in W1 and 
kV2, respectively. IfMl, that currently has high certainty, is refuted by the or- 
acle set op, which is newly obtained from him, to the problem that naturally 
belongs to JJ:, or if M, can not cover a certain goal in db, then the system 
hesitates to dismiss Ml and tries to interpret the status of his conceptual 
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discrimination as undifferentiated. If M2 satisfies a,, 0 is moved into W2 
and supports M2 there. Both discrimination conditions <and C2, which are 
world predicates of Wl and W2, are revised to be C1 v C2. If any clauses in 
any other worlds in the tree except the "another world do not support op, it 
is assumed that he was thinking in the world that contains naive buggy 
knowledge and has solved the problem informally. 6 is moved into the "an- 
other world" which is prepared to cover his unform d ated problem solving, if 
one of the buggy clauses, prepared in the world in advance, satisfies a*. 

In our example, the student correctly answered several questions in- 
cluding Question 1 in the past, so that the student model had the correct 
clause to get the force which an object in uniformly accelerated motion re- 
ceives. He made the wrong answer utilizing his naive physical world to 
Question 3 later. HSMIS receives oracles made from his answer,-for 
instance, oracle(subtract(l9.6,0,19.6),true), oracle(subtract(2,0,2), true). 
The above clause in the world of uniformly accelerated motion does not sat- 
isfy these oracles and derives an answer different from that of him. HSMIS 
recognizes the need for a new clause whose head is get-direction-offorce 
to satisfj the oracles. There exists the correct clause, however, which should 
have been applied to the problem, in the world of uniformly accelerated mo- 
tion in the student model. The clause is reliable enough because the student 
correctly answered some questions using the method corresponding to the 
clause. The student, however, does not apply the method to the latest ques- 
tion. Therefore, it is unreasonable to assume he solved the problem in this 
world. 

For this reason, THEMIS does not choose to resolve the inconsistency 
in the single world. Instead, it considers the situation as a multi-world con- 
tradiction and it searches for the world that already contains the clause 
which satisfies the oracles. If the search fails, THEMIS tests "another world 
which represents students' naive problem solving. In this example, the sys- 
tem finds out the clause that represents his erroneous "motion implies force" 
misconception prepared in the naive world in advance. The system revises 
discrimination conditions that partition the concept of motion into the world 
of formulated physics and that of naive physics. It can explain his discrimi- 
nation status, that he unstably applies physics formulas and naive knowl- 
edge. 

Correcting Student Knowledge Contradictions 

By modeling student knowledge contradictions, the system is able to re- 
alize very effective and "real" Socratic tutoring as follows: 
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1. Give him a problem such that he tries to solve it in his naive world and 
fails to get a correct solution. 

2. Remind him of the correct answer to the problem he obtained in 
Question 1. 

3. Point out the inconsistency between the two results. 
4. Explain the causes and guide him to build a correct concept. 

In this way, he can correctly identify attributes necessary for building the 
concept, which we call world predicates, and establish relationships between 
them. Thus he can appropriately conceptualize the knowledge in both 
worlds. Obtaining the student model that represents the student knowledge 
contradiction, the system becomes able to generate an effective tutoring dia- 
logue as in Figure l l. 

Tutor: Solve this problem. (Give a prol>la:111 ui111ilar to Ql~eatioll 1 agail~) 
Tlrc ~ ~ l r r l ~ r t  ,:or,~crl!/ an..lr*er... 

Tutor: You msvered in Question 3 that the direction of the force vhich the sphere receives is upward at 
t = l a .  tecause it is still moving upwards then. If chat was correct, why didn't you say that the 
sphere in Question 1 receives force to the right? 

Strrdent:Because it was moving upvards. so it is hardly possible that it continued receiving force downward. 
Tutor: The tvo problems are completely the same, e . g . ,  speed at each time. etc.. except for the direction 

of motion. If direction of force vere to be implied from motion. you should have naturally s u d  
that the direction of the force is to the left in Question 1, but you didn't. (You should have 
"motion implies force" misconception in your naive physical world. 

Figure 11. A hypothetical example o f  tutoring behavior using student knowledge 
contradiction 

The mechanism for single world contradictions explained earlier and the 
framework to handle multiworld contradictions explained in the previous sec- 
tion are integrated into THEMIS. It gives up constructing a unified consis- 
tent model and dares to build a model in multiple worlds, when newly ob- 
tained data deny the reliable current model. The control mechanism guaran- 
tees the fidelity and the accuracy of the model in each world. Student's in- 
correct inference methods, such as the use of abduction in his problem solv- 
ing, can be formulated as contradictions. However, this topic has been kept 
for future work. 
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DISCUSSIONS 

Here some basic issues of comparative student modeling methodologies 
are discussed. 

One cannot model students without defining a "bug" which is one of 
the key concepts of student modeling. The definition of bugs in turn defines 
the search space for student modeling. Bugs are defined as a mal-function 
or a mal-structure of the correct knowledge from the computational point of 
view. By mal-function and mal-structure, we mean a state in which a compo- 
nent of knowledge does not realize its function and a state in which the 
structure of knowledge is incorrect, that is, some component is missing or in- 
serted, and so on, respectively. From this point of view, there are three types 
of models which model (a) what component of the correct knowledge is in- 
correct (mal-function- 1 ), (b) how the component is incorrect (mal-hnction-2), 
and (c) how the structure of the knowledge is incorrect (mal-structure). The 
second type not only identifies what component of the correct knowledge is 
incorrect in the student's head but also models how it is incorrect in a limited 
way, for example, using fault models of each component. It cannot model, 
however, why the function is so incorrect. Needless to say, the third type is 
the most powerfd type of modeling, since it models what, how, and why the 
component is incorrect by modeling the incorrect structure of the knowl- 
edge. 

Although student modeling is generally viewed as an inductive process 
in which a representation explaining observed data is built, we can find an- 
other view, that is, as the analysis of the expertise model using the observed 
data (Hoppe, 1994). Modeling methods which obtain information of the stu- 
dent's understanding state by analyzing the correct knowledge based on the 
student behavior are called "analytic methods" here. A student model does 
not have to explain all the behavior of the student. Considering that its func- 
tion is to give necessary and sufficient information to the tutoring module, 
analytic methods work very well for many types of tutoring modules. Typical 
examples of analytic methods are the overlay model (Carr et al., 1977), the 
logic programming method (Hoppe, 1994), and model-based cognitive diag- 
nosis (Self, 1993a). This type of methods does not model mal-structure, while 
inductive methods try to represent it. Typical examples of inductive methods 
are the buggy model (Burton, 1982), perturbation methods (Otsuki et 
a1.,1985), ACM (Langley et al.,1984), and THEMIS. Table 4 summarizes the 
characteristics of the methods discussed in this section. 
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Table 4 
Evahation of Student Models 

Systern llanle Analytic/ Mnl- M xl- Mal- Inco~~s i s t e~ l cy  Tlleoretical Question 
i~lcl~tctive fu~~c t io t l -  1 f1111ction-? structl~re foundation automatically 

Analytic Methods 

The Overlay model (Carr et al., 1977) is relatively easily used to control 
the modeling processes. That is why the overlay model has been used in 
many ITSs. Since it cannot represent the student's incorrect knowledge, the 
performance of overlay-model-based ITSs is limited. 

Hoppe ( 199 1,1994) proposes a method to analyze the correct knowledge 
represented as a Prolog program by executing the program with the student 
answer as a goal. When the student answer is incorrect, the execution fails if 
it is interpreted by a Prolog interpreter. In order to recover the execution fail- 
ure, he introduces a fail-safe meta-interpreter of Prolog and detects uncov- 
ered goals which potentially correspond to the student's bug. Many uncov- 
ered goals are usually detected, so he employs the EBG (Explanation-Based 
Generalization) technique to formulate rules called error patterns which are 
used to select the goals corresponding to the plausible bug. The search 
space of this method is small, since it is restricted to the computation tree of 
the correct knowledge. This method requires pre-defined classification rules 
which roughly correspond to bug rules, though they are more abstract than 
bug rules. It represents bugs of type mal-function-2. This method does not 
suffer from the inconsistency problem, because it builds a model from one 
dat~lm. 

Self (1993a) gives a characterization of student modeling as model- 
based cognitive diagnosis, making an application of GDE (deKleer et al., 
1987). GDE is essentially based on an exhaustive search over the search 
space defined as a set of all the combinations of possible faulty components 
with the aid of ATMS. The search mechanism, in principle, is hence to check 
what set of components are faulty and to determine a minimum set of faulty 
components. Another advantage of GDE is its automatic question genera- 
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tion mechanism for disambiguation of the fault hypotheses. It represents 
only mal-function-1, although it does not require any bug library. Just a 
small extension, such as the introduction of fault modes into each compo- 
nent, enables it to cover type mal-function-2 as Self indicates. It is sensitive 
to inconsistent data. The theoretical foundation becomes more firm and 
sound in this order, though there is a large gap between the overlay model 
and Hoppe's method. 

Inductive Methods 

IDEBUGGY (Burton, 1982) has many modular chunks of buggy proce- 
dures. It has the capability to cope with the noise problem; however, it is not 
complete. Its searching strategies depend on the assumption that each indi- 
vidual buggy procedure can be extracted from a combined buggy procedure. 
The burden of cataloging bugs is still left. 

Bugs are viewed as variants of correct knowledge. They can be generat- 
ed by applying perturbation operators to correct procedures. Perturbation 
methods are based on this idea. Takeuchi and Otsuki (1 987) utilize this type 
of method in their system BOOK (Otsuki et a1.,1985) in which two types of 
perturbation operators (domain-dependent and domain-independent ones) 
are introduced to augment the modeling power. The search space of this 
method is dependent on the complexity of the perturbation operators used, 
which is not usually so large. The method has no firm theoretical foundation 
for it but does not suffer from inconsistency of the data, since it builds a 
model from one observation. 

Both ACM (Langley et al., 1984) and the authors' method THEMISMS- 
MIS are based on the idea that student modeling is viewed as inductive 
learning from a set of examples. These two methods are almost equivalent in 
representation power of the student model. They can model not only mal- 
functions but malstructures in terms of predefined primitives. Both methods 
act as domain-independent engines and their capabilities contain those of 
both the overlay and buggy methods. Besides, both of them can cope with 
noisy data. In general, it seems that the method of inference in ACM is not 
so sophisticated as that of HSMIS. 

The major difference is their searching and diagnostic strategies for as- 
certaining what part of the model conflicts with the student. HSMIS can 
prune the search space for new clauses in a refinement graph, although 
ACM originally made a blind search of all its search space. To embody effi- 
cient searching, Langley et al. (1990) have been developing DPF (Dynamic 
Path Finder). 
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HSMIS can incrementally revise the model using newly obtained data. 
Although the path-finding algorithm is formulated by DPF, the rule-finding 
process is not formally defined. HSMIS can distinguish between noisy data 
and bug migration (Ikeda et al., 1993; Kono et al., 1993a) while ACM cannot 
currently (Langley et al., 1990). HSMIS asks questions which are logically re- 
quired in consideration of educational appropriateness, while ACM does 
not. 

Other Types of Methods 

Huang (1993) proposes a logic to capture the student's inconsistent 
knowledge. Surprisingly, only his study, apart from THEMIS, has so far 
been carried out on modeling student knowledge contradictions. Although it 
is well-defined in terms of propositional calculus, it would be difficult to ex- 
tend it to deal with first order predicate calculus. 

The role of a student model is to provide a tutoring module with infor- 
mation necessary for generating adaptive behavior. There is no need to pro- 
duce precise information more than required. PROTO-TEG (Dillenbourg, 
1989) is an interesting ITS based on this idea. It does not generate any struc- 
tured information that can be regarded as a student model, but generates 
heuristics to produce tutoring behavior directly by incorporating one of the 
inductive learning theories, LEX (Mitchel et al., 1984). It is successll in han- 
dling its simple didactic strategies. 

Considering the functions the student model should perform and the in- 
tractability of modeling, Ohlsson (1993) proposes a new approach to student 
modeling called constraint-based in which domain knowledge is represented 
by a set of constraints and the student model is represented by constraint 
violation. The idea seems good, since it can avoid many of the difficulties 
wlzich current modeling technologies are suffering from. One has to identifj., 
however, sets of constraints which cover all the information the tutoring 
module requires which is not an easy task. 

CONCLUDING REMARKS 

This paper has presented a comprehensive student modeling methodol- 
ogy and its use in an ITS. Contradictions we have to cope with during mod- 
eling students are first defined. As a result, we obtained four types of con- 
tradiction, including contradictory knowledge possessed by students. The 
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modeling system of such students has to model undifferentiated concepts 
and inconsistency as it is. A sophisticated control mechanism to deal with 
both single world and multi-world contradictions for THEMIS has been de- 
veloped. 

Finally, THEMIS has been compared with other modeling systems from 
various viewpoints to demonstrate that it is a well-defined and generic stu- 
dent modeling algorithm, which can build a student model of high represen- 
tation power. THEMIS has been implemented in Common-ESP(Extended 
Self-contained Prolog) (AIR, 1990), and HSMIS is embedded in FITS, Frame- 
work for ITS. Two ITSs have been built using FITS, one on geography and 
the other on chemical reactions (Ikeda et al., 1994; Mizoguchi et al., 1987; Mi- 
zoguchi & Ikeda, 199 l). 

References 

A1 Language Research Institute (Ed). (1 990). CESP Language Guide, 5-1-1, 
Ohuna, Karnahxra, Kanagawa 247, Japan. 

Burton, R. R. (1 982). Diagnosing bugs in a simple procedural skill. In D. Slee- 
man & J.S.Brown (Eds.), I~~telligerrt Tutoring Systenls. London: Academic 
Press. 

Carr, B., & Goldstein, I. (1 977). Overlays: A theory of inodeling for computer 
aided instruction. MIT AT Memo 406. 

Clement, J. (1 982). Students' preconceptions in introductory mechanics. Amler- 
ican Journal of Pl~ysics, 50,66-7 1. 

de Kleer, J. (1 986). An assumption-based TMS. Artificial I~~telligence, 28, 127- 
162. 

de Kleer, J., & Williams, B. C. (1987). Diagnosing multiple faults. Art19cial 111- 
telligence, 32,97-130. 

Dillenbourg, P. (1 989). Designing a self-improving tutor: PROTO-TEG. In- 
structional Science, 18, 1 93 -2 1 6. 

Dillenbourg, P., & Self, J. (1 992). A framework for learner modelling. Interac- 
tive Learning Enviroi~ments, 2(2), 1 1 1-1 37. 

Hoppe, H. U. (1991). An analysis of EBG and its relation to partial evaluation: 
Lessons learned. Arbeitspapiere der GMD. 

Hoppe, H. U. (1 994). Deductive error diagnosis and inductive error generation 
for intelligent tutoring systems. Journal of ArtiJicial Intelligence in Edzrca- 
tion, 5(1), 27-49. 

Huang, X., McCalla, G. I., Greer, J. E., & Neufeld, E. (1 991 a). Revising deduc- 
tive knowledge and stereo-typical knowledge in a student model. User 
Modeling and User-Adapted Ii~teraction, 1, 87-1 15. 

Huang, X., McCalla, G.I., & Neufeld, E. (1 991 b). Using attention in belief revi- 
sion. In Proc. R4AI-91, pp. 275-280. 



412 Kono, Ikeda, and Mizoguchi 

Huang, X. (1 993). Inconsistent beliefs, attention, and student modeling. Journal 
of ArtrJcial Intelligence in Education, 3(4), 4 17-428. 

Ikeda, M., Mizoguchi, R., & Kakusho, 0. (1 988). A hypothetical model infer- 
ence system. Trans. of IEICE Japan, 571 -0, 1 76 1 - f77 1 (in Japanese). 

Ikeda, M., Mizoguchi, R., & Kakusho, 0 .  (1 989). Student model description 
language SMDL and student model inference system SMIS. Trans. of IE- 
ICE Japan, J72-D-11, 1 1 2-1 20 (in Japanese). 

Ikeda, M., Kono, Y., & Mizoguchi, R. (1993). Nonmonotonic model inference- 
A formalization of student modeling. In Proc. IJCAI'93 (pp.467-473). 
Chambery, France. 

Ikeda, M., & Mizoguchi, R. (1994). FITS: A framework for ITS-A computa- 
tional model of tutoring. Jotrn~al ofArtrJicia1 Intelligence in Education, 5 
(3), 3 1 9-348. 

Kawai, K., Mizoguchi, R., Kakusho, O., & Toyoda, J. (1 987). A framework for 
ICAI system based on inductive inference and logic programming. New 
Generation Computing, 5(1), 1 15-1 29. 

Kono, Y., Ikeda, M., & Mizoguchi, R. (1992). To contradict is human -Student 
modeling of inconsistency. In C. Frasson et al. (Eds.), Intelligent tutoring 
systents (pp. 45 1 -4 58). Springer-Verlag. 

Kono, Y., Tokimori, T., Ikeda, M., Nomura, Y., & Mizoguchi, R. (1 993a). A 
student model building method based on formalization of nonrnonotonicity. 
Jouri~al of Japanese Society for ArtiJicial Intelligence, 8(4), 488-498. (in 
Japanese) 

Kono, Y., Ikeda, M., & Mizoguchi, R. (1993b). A modeling method for stu- 
dents with contradictions. In Proc. AI-ED 93 (pp.481-488). Edinburgh, 
Scotland. 

Kono, Y., Ikeda, M., & Mizoguchi, R. (1 994a). An inductive student modeling 
method which deals with student contradictions. IEICE Trans. on Znfornta- 
tion and Systems, E77-D(1), 3 9-48. 

Kono, Y., Ikeda, M., & Mizoguchi, R. (1994b). THEMIS: A no~tmonotonic in- 
ductive student rioodeli~tg system. (Technical Report AI-TR-93 -5). Artificial 
Intelligence Research Group, ISIR, Osaka University. 

Langley, P., & Ohlsson, S. (1 984). Automated cognitive modeling. In Proc. 
AAAI-84, pp. 193-1 97. 

Langley, P., Wogulis, J., & Ohlsson, S. (1 990). Rules and principles in cognitive 
diagnosis. In N. Frederiksen et al. (Eds.), Diagnostic monitoring of skill 
and Btotl~ledge acquisitio~~ (pp. 2 1 7-2 50). Lawrence Erlbaum. 

Mitchel, T., Utgoff, P., & Benerji, R. (1 984). Learning by experimentation: Ac- 
quiring and refining problem solving heuristics. In R. Michalski et al. 
(Eds.), Machine lean~ir~g.  Springer-Verlag. 

Mizoguchi, R., Ikeda, M., & Kakusho, 0 .  (1 987). An innovative framework for 
intelligent tutoring systems. In Proc. IFIP TC3 IVorking Co~tference 0 1 1  AI 
Tools in Education (pp. 105-1 20). Fascati, Italy. 

Mizoguchi, R., & Ikeda, M. (1 991 ). A generic framework for ITS and its evalu- 
ation. In R. Lewis & S. Otsuki (Eds.), Advanced research on co~nputers 
in edrrcation (pp. 63-72). North-Holland. 



THEMIS: A Nonmonotonic Inductive Student Modeling System 

Ohlsson, S. (1 993). Constraint-based student modeling. Journal ofArtiJicial 111- 
telligence in Education, 3(4), 429-447. 

Otsuki, S., & Takeuchi, A. (1985). Intelligent CAI system based on teaching 
strategy and learner model. In Proc. WCCE 85, pp.463-468. 

Self, J. (1988). Bypassing the intractable problem of student modelling. In 
Proc. IT5 '88 (pp. 1 8-24). Montreal, Canada. 

Self, J. (1 993a). Model-based cognitive diagnosis. User Modeling and User- 
Adapted Interaction, 3,89-106. 

Self, J. (1993b). Formal approaches to student modeling. In G. 1.McCalla & 
J. Greer (Eds. ), Student modelling. Springer-Verlag . 

Shapiro, E. Y. (1981). Inductive inference of theoriesj-omfacts. (Yale Universi- 
ty Research Report 192). 

Shapiro, E. Y. (1 982). Algorithmic Program Debugging. MIT Press. 
Stevens, A. L., & Collins, A. (1977). The goal structure of a Socratic tutor. 

Proc. National ACM Conference, pp.256-263. 
Takeuchi, A,, & Otsuki, S. (1987). Formation of learner model by perturbation 

method and teaching knowledge. Trans. Information Processing Society of 
Japan, 28(1), 54-63. (in Japanese) 

Wenger, E. (1 987). Artijcial intelligence and tutoring systems. Morgan Kauf- 
mann Publishers. 

Woolf, B. P., & Murray, T. (1993). Using machine learning to advise a student 
model. Journal of ArtiJicial htelliger7ce in Education, 3(4), 40 1 -4 16. 

Notes 

1. "Fixing stage" means an intermediate learning stage where acquired knowl- 
edge is not completely established yet. 

2. For simplicity, "she" is used to refer to the teacher and "he" to refer to the 
student in general. 
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