
A Robot Programming Model for Mediating Between

Familiarity-Oriented Behaviors and Environment-Oriented Behaviors

Akihiro KOBAYASHI, Izuru KUME, Atsushi UENO, Yasuyuki KONO, Masatsugu KIDODE
Graduate School of Information Science, Nara Institute of Science and Technology

Takayama-cho 8916-5, Ikoma-shi, Nara, 630-0192 Japan

ABSTRACT

In this paper we propose a novel programming model
for a personal robot that has an original behavior and
is provided with a new one by various working en-
vironments. How to coordinate robot’s devices is an
inevitable problem in robot programming. Normally
the coordination is the responsibility of applications.
In our case, however, we can’t expect any coordina-
tion by the applications for the original and the new
behaviors, because they are developed independently.
We introduce a middleware that mediates accesses to
robot devices. We point out basic concepts to qual-
ify mediation, and propose a new robot programming
model for those applications that promote mediation
quality and cope with undesirable mediation results,
it any.

Keywords: Robot Middleware, Personal Robot,
Mediation of Multi-Application, Human-Impression of
Robot Actions

1 INTRODUCTION

In this paper, we propose a middleware and a pro-
gramming model to give personal robots the ability
to supply local specific services in each working envi-
ronment while keeping their original familiarity. Re-
cent researches provide two viewpoints of the usage
of autonomous mobile robots. On one hand, a robots
is thought as a mobile and intelligent interface　 to
information systems [2, 17, 11]. On the other hand,
robot owners expect their robot to behave as a famil-
iar amusement creature like a pet. Human impression
on their appearance and motion is one of the most
important issues [7, 8].

In near future, a personal robot which accompanies
its owner should gain the role of interface to the in-
formation system in a working environment as long
as they stay there. This ability gives benefits to both
the owner of the robot and the service provider of the
environment. ¿From the owner’s viewpoint, he’d like

to access the system through his familiar robot. The
information system could use the personal robot as its
physical interface for the visitor. Otherwise the service
provider should prepare enough number of robots to
provide these services. The benefits are summarized
in the following.

• Owners

– Robot owners are provided with services
adapted to the current environment.

– Robot owners can access the services
through his familiar interface.

– Adopted behaviors shows a change that pre-
vents owners from getting bored with man-
nerism.

– Robots in an environment would collabora-
tively work without any collision.

• Service Providers

– It is not necessary to stock many robots for
providing service; e.g., guiding visitors.

– The robot would follow TPO rules without
its efforts.

A robot owner feels familiar with original behaviors
of his robot. On the other hand, new behaviors in-
troduced by a local information system might make
his robot behave distantly to its owner, though they
provide useful service. Both kinds of the behaviors
have a requirement about the robot’s physical states
so that the robot can accomplish them. Each behav-
ior’s execution normally changes the physical states.
From the viewpoint of an application, the robot’s state
might be changed during its execution by its counter-
part application. If the changed state doesn’t satisfy
the requirement of the application’s behavior, possibly
it can’t be executed correctly. We call such a situation
an interference by the counterpart’s behavior. We say
also that the counterpart’s behavior interferes with
the application’s behavior.

Although both of the behaviors had better to be
executed in parallel, the robot must prioritize one to
another if it detects interference. In the following we

will see an example of interference between two ap-
plications in a robot, one application implements a
pet-like motions while another navigation service in
a building. We will also see how the robot prioritize
the latter’s behavior to the former’s in order to avoid
interference.

One application implements a pet-like behavior in
a robot. For example, the robot occasionally turns
around its owner with its pretty gestures and moves
toward the owner as if a pet runs toward its beloved
owner. Then it keeps around its owner for a short
time. The program uses a way of visual feedback based
on a human recognition technique. This familiar be-
havior takes place anywhere and anytime in order to
entertain its owner. Another application implements
a service to guide visitors to their destination. This
program uses a navigation technique based on a topo-
logical navigation technique. The guide service shows
a user friendly behavior that a guide robot prompts a
visitor to which directions he should go at a corner in
the building.

When a visitor and his robot enter the building, the
robot begins to guide its owner while it occasionally
shows the pet-like behavior at the same time. They
can cope with the parallel execution of the both appli-
cations by adjusting the movement vector and keeps
the owner in its view. (Fig. 1 a) However, when they
come to a corner and the navigation behavior prompts
the owner (Fig. 1 b), the pet-like behavior should be
stopped for two reasons because the robot should pre-
vents the owner from being confused. There is another
reason to stop the pet-like behavior that the robot
should watch the owner not to go in wrong direction.
Hence keeping him in its view is critical at this mo-
ment. (Fig. 1 c) The robot should restart the pet-like
behavior as soon as after they leave the corner in order
to entertain the owner.

Owner

view

Topological
Move

a) Tracking during Topological Move b) Don’t Move For Navigation Speech

c) Human Lost

?

Go Left
This Corner

And
Walk 10m

d) Restart Detecting

Move For Human
Detection

Figure 1: Example of Simultaneous Execution

Notice that the two applications in the above exam-

ple are not implement to cooperate each other. The
robot, however, could act correctly because it has a
mechanism to avoid interference, which is the theme of
our research. We call the mechanism mediation. This
paper explains the concepts of mediation and a new
programming model to use the mechanism. It is new
theme in robotics to integrate software components
both of which never know how their counterpart man-
ages their common resource, i.e., the physical devices
in the robot. We introduce a new architecture that
separates the management responsibility from appli-
cations. A middleware, called a mediator, has the
responsibility instead. Hence, specification of a medi-
ator and its programming model are key issues of our
research. We categorize robot application and exam-
ine their natures and requirements in general. Then
we can introduce important factors for a mediator to
decide its mediation. We propose a new robot pro-
gramming model, including programming guidelines
and basic concepts to realize the higher level of medi-
ation.

2 MEDIATION

Traditional Robot-Programing
A new framework of mediation is needed for a robot to
execute multi-applications in parallel which are devel-
oped independently, because robot programmers tra-
ditionally have developed whole applications in the
robot on the condition that unknown applications will
never execute. It is necessary to control robot’s mo-
tion consistently, because a robot has accesses to the
real world. However, it’s too difficult to keep the robot
secure while it executes independent applications in
parallel.

There is always a gap between a real world environ-
ment and its representation in a robot gained through
its error-prone sensors. Robot programmers adopt the
reactive programming method to narrow that gap by
repeatedly accomplish short-term goals like obstacles
avoidance, because they believe the latest sensor-input
more than the past information. On the other hand, a
robot application has heavy calculations or long-term
goals such as image recognition or global path plan-
ning in general.

Brooks proposed the Subsumption Architecture [1]
to cope with the both goals. Subsumption Architec-
ture model represents a process as parallel data flows
from sensors input to output by actuators. The model
introduces layers of system modules according to the
various levels of goals. Long-term goals are imple-
mented in upper layers and short-term goals in lower
layers. Interventions from upper layers to lower layers
are allowed. (Fig.2)

Designing under Subsumption Architecture, a pro-
grammer needs to understand details of lower layers

Layer Level 2

Layer Level 1

Layer Level 0

Module

Module

Module

Sensor Motor

inhibit

suppress

Module

Figure 2: Subsumption Architecture

before designing upper layer.

Mediation Framework

In order to cope with dynamic coordination, we pro-
pose a new process model based on mediation instead
of coordination. We assume the middleware on which
all applications run. The middleware provides appli-
cations with basic functions for a mobile robot and me-
diates any access to devices from its applications. Sub-
sumption Architecture coordinates applications with
respect to devices accesses. The proposed middleware
is an online interpreter that can block device accesses
and can schedule threads dynamically using only the
behaviors and additional information. We call the
middleware mediator. (Fig.3)

Mediator

Environment-oriented
Application

Familiarity-oriented
Application

Hardware

Park

Library

Event Hall
Behavior &
Additional
Information

Behavior &
Additional
Information Dynamic Loading

User

Action

Ex: TPO rules,
guide, …etc

Ex: Say Hello,
Take pictures,

…etc

Figure 3: Mediation between Each Application

As Fig.3 shows, a personal robot has its original
application to represent familiar actions. We call such
an application a familiarity-oriented application. On
the other hand, the robot loads dynamically a new
application to perform the information service in the
current environment. We call such an application an
environment-oriented application.1 In this paper, we
name a request from an application as behavior. Each
behavior often interferes with each other.

1Usually applications and actions of robots are traditionally
called as behavior.

Applications with Different Features

The mediator should take care of the difference be-
tween the both applications in order to solve the inter-
ference. A familiarity-oriented application is designed
with robot hardware usually by a same designer. It
provides familiar actions which make user comfort-
able. Therefore, it must include many operations to
drive motors in order to achieve delicate motions. The
mediator should keep minute features of these mo-
tions.

On the other hand, developers of an environment-
oriented application tend to write the code with little
information about robots’ physical feature. An ap-
plication associated with an environment controls un-
known robots witch will come into the environment. It
is impossible for them to predict details of robots ac-
companied with their owner. The programmers must
write their codes to command a robot in an abstract
fashion such as navigation from a place to another.
The applications need to accomplish useful services
and follow TPO rules more seriously than to dupli-
cate details of actions. The mediator should support
basic functions for a mobile robot, and they should be
robust enough.

Requirement to Mediation

The mediated actions should fulfill specific require-
ments of users by estimating the trade-off among the
requirements mentioned in the subsequent section.
The mediator evaluates the quality of performance of
robot’s behavior from three aspects, i.e., reliability,
familiarity, and efficiency. Reliability guarantees to
accomplish services, and to follow TPO rules in the
environment. It is one of the “must” of a robot’s
performance. For example, the behavior generated
of another application would prevent correct speech
recognition, or break the context of interaction. The
mediator should solve those problems. Reliability also
guarantees reactive actions, so that they need for a
robot to deal with the real world environment.

The familiarity means the degree of how the owner
is impressed by its actions. The efficiency is measured
by the time for a robot to spend in its actions. The
user hopes for his robots to take familiar actions and
to accomplish his tasks in a matter of minutes. We
can find trade-offs among familiarity and efficiency.
For example, the familiarity of a robot is high, if it of-
ten performs its familiarity-oriented behavior together
with environment-oriented behaviors. On the other
hand, it also lowers the efficiency in terms of the per-
formance of the given task.

3 POLICY OF MEDIATION

Familiarity
Mediation gives the way of selection in the trade-offs.
We adopt a policy that the familiarity should be pre-
ferred to the efficiency as long as it keeps certain
amount of the reliability, because a personal robot
should be familiar with its user. We suggest some
hypotheses on the sources of familiarity, so that the
mediator can objectively measure familiarity that is
the user’s impression to the robot. We make an as-
sumption that the robot satisfies the familiarity the
best, when the robot performs the familiarity-oriented
behaviors faithfully to its original ones. However the
mediator would suspend, divide or refuse some behav-
iors depending on the situation that the robot faces.
¿From a practical viewpoint, it is reasonable to de-
cide the guidelines for a robot to perform with better
Familiarity. We assume the following factors increase
Familiarity aspect;

• Similar motions in the familiarity-oriented behav-
ior and its total performance time

• Minimising the suspended time of the familiarity-
oriented behaviors

• Seamless switching between the familiarity-
oriented behavior and the environment-oriented
behavior

• Quick responding to the user as possible

Mediation Layers
One of the following four layers of mediations is se-
lected, whenever the mediator gets requests from one
of the applications while executing requests of the
other. Higher layer is more familiar, because the sus-
pended time of the familiarity-oriented behaviors be-
comes smaller when the mediator selects higher layer.
More programmers’ efforts are required to realize more
familiar mediation in general. The mediator tends to
select higher one, as far as the mediator keeps the re-
liability enough.

• Semantic Execution: Both behaviors re-
quested by the applications at the same time run
efficiently. The mediator understands the seman-
tics of the behaviors and generates new actions to
fulfill their features.

• Concurrent Execution: The both behaviors
run simultaneously. The mediator fuses com-
manded motions and cut a part of behaviors to
exclude the part of behaviors which conflict with
requests from the other application.

• Time Sharing Execution: The each behavior
runs exclusively at one time. The mediator makes

a time schedule for exclusive execution. The me-
diator interrupts running behaviors at a “safe”
point, and resumes the suspended behaviors.

• Sequential Execution: Each behavior runs us-
ing batch processing. The mediator injects in-
terruption, and follows the sequence to execute
details of actions faithfully.

4 PROGRAMMING MODEL

Programming Guidelines
As we explained in section 2, environment-oriented
behaviors and familiarity-oriented behaviors possibly
interfere in accesses to devices. As we explained in
section 3, we have an assumption that it is happy for
the both sides of the behaviors if neither one occupy a
robot’s devices for long. For the sake of refined media-
tion, we propose three programming guidelines. First,
a programming code must specify in their code the re-
quirement to access the devices exclusively in order to
require reliability.

Second, the code should permit its counterpart to
access devices as long as its own reliability is guaran-
teed. We call a programming code written with this
principle a reconcilable code. Applications written in
a more reconcilable code enable higher mediation, be-
cause the mediation can allot each side to the devices
one after another in a short time. Third, program-
mers should expect and cope with the situation that
its request will be refused or interrupted by its coun-
terpart. The programmers cannot avoid such a case
because mediation might prioritize the counterpart at
runtime.

Reference Model of Robot’s State
As Application often refers and changes physical
states of a robot in the real world environment.
Environment-oriented application programmers must
write their code without physical details of the robot.
Therefore, they need one common reference model
that abstracts physical states of robots equipped with
a variety of physical devices. The mediator in a robot
must understand the current state of the robot from
its sensor-inputs, and must make motor-outputs to
change the current state into the next state required
by the application. Therefore, the mediator is re-
sponsible for the bi-directional translation between ab-
stract states in application and physical states.

Recent fruitful research results in mobile robots [13]
show the maturity of mobile techniques, which help
our work to construct the reference model with respect
to mobility. We assume the existence of a map of the
working area, which we restrict to inside of building
of office or public spaces. We have also assumed a
universal way of tracking that is less dependent on
robot’s hardware configuration and environment. As

for the latter means, we believe that combination of
topological navigation [9, 10] and tracking technique
using ceiling image [15] satisfies our requirements.

Although our work is now in progress, we have al-
ready pointed out several basic concepts of the refer-
ence model with respect to mobility as follows:

• robot’s coordinate position in a map

• topological position in a map

• prohibition zones

• robot’s direction

• obstacles

• robot’s velocity

• robot’s attitude

• device occupation

All of them are crucial especially for programmers
of environment-oriented applications. Coordinate po-
sition is a “exact position” on a map provided by
environment-oriented application programmers.2 In
general, robot navigation often accepts a range of po-
sitioning error and topological positions are used for
navigation programs instead of coordinate positions.
Prohibition zones are specified in either of style po-
sitions. They include those places where guests and
their robots should not enter as well as blind spots for
position recognition by robots. The direction means
absolute bearing in a map. Obstacles mean those ob-
jects, which don’t exist in a map but detected by the
sensors of a robot. Attitudes mean whether the robot
is ready to move. Some robots have a complex body
cannot move at any time. Device occupations means
that one of the application needs to access the device
exclusively.

Embodiment-Based Exception Handling
As we explained in section 2, a programmer should
describe additional informations for a better media-
tion. For that purpose, the programmer should clear
(1) where he needs to protect the robot’s action in
his code, (2) what he needs to protect, (3) how much
he needs, and (4) what he needs to do when the pro-
tection is broken. We introduce a programming style,
called embodiment-based exception handling to express
those requests. An exception handling consists of four
factors programming constructs, block, definition, se-
riousness, handler.(Fig.4)

A block is defined by an area of an application codes.
The programmer describes it using curly brace, and so
on. The robot cannot accomplish some behaviors, be-
cause of the actions of the counterpart application.

2We assume the existence of a standard format of maps

The counterpart application may break the critical
control, cause the user’s confusion, or interfere with
sensing. The programmer should signify the block
where the behavior needs the particular state of the
robot in its codes.

A definition is defined by a state of the robot or
refusal exception. A programmer describes the state
of robot using the reference model. The refusal ex-
ception is defined as a special state by the mediator.
When the robot becomes in the exception state in the
block, the mediator throws the exception defined, and
move the control to the handler associated with the
exception. For example, if the programmer wants the
robot to wait some guests in entrance hall, the robot
must keep in the entrance hall during waiting guests.
He should define the state that the robot is away from
the entrance hall as the definition of an exception, and
should define the area of his codes waiting guests as
the block of the exception. The refusal exception is
thrown when the requested command is refused be-
cause of the conflict with the counterpart application.
The programmer can describe the handler to deal with
the refusal because of unexpected causes.

Seriousness defines whether the application can
compromise or requests the refusal of the counterpart.
If an exception is defined as serious, the mediator as-
signs high priority to protect from the exception with
restricting requests by the counterpart. A handler de-
fines what the application should do, when the excep-
tion signal are thrown. There is one handler associ-
ated with one definition of exception. The program-
mer should describe exception handling for the robot
to take correct actions, i.e., breaking of loops, initial-
ization of local parameter, memory allocation, and so
on. Even if the programmer specifies an exception
as serious, he should define the handler of the excep-
tion. The exception may arise, when the counterpart
interferes with the execution in the block. Program-
mers should avoid unnecessary serious specifications,
because they interfere with those block witch are se-
rious.

5 REALIZATION

Mechanism
We explain the internal mediation mechanism. The
mediator intercepts all requests from applications to
access the devices. It abstracts sensor-inputs and
actuator-outputs as a state in the reference model in
section 4. Application requests the mediator to enter
a block. If one application is in a block of a serious
exception and its counterpart is not, device access re-
quests by the latter are ignored by the mediator when
any interference is detected. If both applications are in
their block and the both definitions have any inconsis-
tency, the mediator should select one application and

Process

Device Access

Process

Device Access

Block

Exception
Handler

Reference Model
Current
State

Exceptional
State

Exception-0

Behavior-0
Code of Application-1

Exception-1

Behavior-1

Current Request

Serious

Interpret

Reasoning Exception

Exception
Signal

Refuse

System
Operation

Exception-1
Representation

Current Request

Hardware
Sensing

Action

Code of Application-0
Interpret

Interference

Stopping
Process

Block of Exception-1

Figure 4: Model of Exception

throws an exception to the counterpart. The middle-
ware makes a selection based on the seriousness of the
blocks and its mediation policy explained in section 3.
The exact selection mechanism depends on the medi-
ator’s implementation.

There are two types of exceptions according to the
timing to detect interference. A refusal exception no-
tifies refusal of an access request. A state exception
notifies an application that its counterpart accessed a
device and set the robot in an undesirable state. Ap-
plications thrown an exception by the mediator exit
their block and move their control flow to the handler
corresponding to the exception, if any.

Fig. 4 shows a snapshot of a mediation process. The
mediator has just detected that one application (de-
noted as “application-1”) requests a device access (de-
noted as “current request”) which causes new state.
Because its counterpart (denoted as application-0)
specifies the state as a serious exceptional state, the
mediator refuses the request and throws a refusal ex-
ception to application-1. Upon the refusal, the control
flow of the application-1 move to the corresponding
handler (denoted as Exception Handler).

Example Mediation

Now we go back to the example in section 1. In or-
der for the robot to act as described in the example,
application programmers must implement appropriate
embodiment-based exception handling code as well as
the behaviors. We assume that the programmers in
each side obey the programming guidelines explained
in section 4. The environment-oriented application
programmers believe that its counterpart’s behavior
should be depressed during the behavior despite the
second rule in the guidelines. The familiarity-oriented
application programmers, on the other hand, are tol-
erant of interference by their counterpart, that is, any

environment-oriented application during the pet-like
behavior.

The environment-oriented application programmers
specify the physical state required during the prompt-
ing behavior. They think that the robot should stop
near the corner and track its owner in order to watch
him. They specify their requirement by defining two
embodiment-based exceptions, immobility and human
tracking. The programmers can describe the defini-
tions in terms of the reference model explained in sec-
tion 4. 3 They specify a block to include the code
for the prompting behavior. The block is specified
as serious in order to reflect the programmers’ above
consideration with respect to interference. Then they
implement a code to handle the rise of the exceptional
state. The handler codes were not executed in this ex-
ample and we thus omit their explanation. As for the
pet-like behavior of the familiarity-oriented applica-
tion, its seriousness is specified not so serious because
of the above consideration by its programmers. There-
fore, the application tends to catch a refusal exception
during the behavioral execution. The handler simply
repeats the whole execution from its start as soon as
possible.

Of course the mediation result between the two be-
haviors depends on the mediator’s implementation.
However, we can expect that many mediators’ respects
the seriousness assigned to the block of embodiment-
based exception handling code. The mediator in this
case also prioritizes the environment-oriented behav-
ior to its counterpart because of the assigned serious-
ness, and thus we gain the result in section 1.

3Notice that environment-oriented applications are written
for anonymous robots which will accompany the visitors to the
environment.

6 DISCUSSION

Realization
The mediator should get over the variety of robots
and environments. In that point, it isn’t difficult to
implement the mobility of robots into a middleware.
There are two reasons for it. First, it is necessary for
programmers to express robot’s actions, that the out-
puts of robots are defined as general descriptions. It
is easy for robot navigation, because the outputs of
robots can be expressed with 2-dimensional vectors.
Second, robust recognitions of environments should be
implemented into the mediator to enable every robot
to use supported commands in everywhere. The func-
tions of robust localization will be developed in the
near future, under the favor of past researches [13].

Not only robot navigation, but also human-robot
interaction should be supported by the mediator, to
make robots more familiar. To realize it, the general
model of human-robot interaction should be made,
and the robust recognition about human is needed.
Those problems are difficult, but we have a chance of
robust communication on the whole, if the improved
turn-taking rules effectively use cleverness of human.

Development Method
We didn’t address performance issues in our program-
ming model. In general, performance often affects
robot programs. For example, navigation program
should arrange robot’s movement rate with the frame
rate of its image recognition. In addition, to such
general cases performance issues should be introduced
into our programming model. Interference in device
accesses possibly introduces extra motions of physical
device which were not intended in original program
codes. The interference might hold the essence of the
original motion but affects its physical efficiency. It is
a rational intention to assure the motion’s good per-
formance by preventing its counterpart’s interference.
Hence, the description of its mediation policy should
include performance issues. Performance assurance
may be requested by application programmers. For
this purpose we need a means to define exceptions us-
ing performance issues.

How to describe performance issues is an open prob-
lem at this stage. We expect that they only appear
in exceptions. Apart from implementation, how to
design and check software with performance specifica-
tion is also important. For this problem, we will find
a method in a similar fashion to real-time software de-
sign and specification methods [3, 14]. How to model
mediation policies from the view point of performance
is an important problem, too. One of the key concepts
of the policies is matching between requirement and
supply of robot devices. We believe we can describe it
in terms of balancing problem between demands and
capacity of computer resources. It suggests that we

can apply quantitative approaches such as the one by
Graupner and et al. [5], for example.

At this stage, we imagine the notation of
embodiment-based exception handling in a similar
fashion to Java’s exceptional handling notation [4].
We select this notation style because we specify a
block, the duration of a mediation request, in terms of
the lines in a programming code. It is familiar to many
programmers who are used to “try and catch” excep-
tional handling style. However, there is a possibility
that application programmers need another specifica-
tion of the duration that doesn’t correspond to blocks
of lines. Such cases will arise, for example, if they want
to request mediation while a robot navigates in a par-
ticular area. We believe aspect-oriented programming
style [16, 6] suites such needs. We will need to ex-
tend the concept of “pointcut” so that we can specify
various kinds of duration in which mediation requests
should be applied. This programming style will sepa-
rate embodiment-based exception handling as an “as-
pect” from main control flows, and thus decrease the
efforts of software maintenance.

7 RELATED WORK

There are little attempts to give robots the ability to
execute parallel multi-applications that are developed
independently.

We try to measure human impression to decide the
policy of mediation. Imai and Kanda [7, 8] studied
about human-robot interactions at the view point of
human impression. Their research aims to discover
evaluation methods of human-robot interaction (both
subjective and objective measurements), analyze so-
cial relationships between humans and robots, in order
to introduce robots into real human society.

Our reference model of mobile robots should apply
to various hardwares. Resent researches of middleware
for robots will help us. ORiN [12] aims to standardize
the specifications of interface and data and negotia-
tion for robot controllers to communicate with vari-
ous applications. It enables heterogeneous robots to
communicate with each other, separates applications
from robot controllers.

As for performance issues, real-time UML [3] pro-
vides a method to express real-time design model of
robots’ behaviors. It augments UML and introduces
performance specification into diagrams. We can ex-
tend the specification with more aspects in order to
evaluate their quality.

8 CONCLUSION

In this paper, we propose a middleware and a pro-
gramming model to give personal robots the ability
to supply local specific services in each environment

while keeping their original familiarity. We aim at fa-
miliarity from them, and categorize mediation method
along the policy of mediation for personal robots. We
suggest the programming tool to enable high level me-
diation. The programmer defines exceptions and their
handler to keep the desirable state of the robot with-
out excessive occupation. The capability of these com-
mands depends of description of the robot model. We
analyze the mobility of robots, but more efforts to gen-
eralize the robot’s embodiment are needed to mediate
the human-robot communication in this system.

References

[1] R. A. Brooks. A Robust layered control system
for a mobile robot. IEEE Journal of Robotics and
Automation, RA-2, 2(1):14–23, March 1986.

[2] J. Buhmann, W. Burgard, A. Cremers, T. H.
D. Fox, F. Schneider, J. Strikos, and S. Thrun.
The Mobile Robot Rhino. AI Magazin, 16(1):31–
38, 1995.

[3] B. P. Douglass. Real-Time UML. Addison-
Wesley, 1998.

[4] J. Gosling, B. Joy, and J. S. Guy L. The Java
Language Specification. Addison-Wesley, 1996.

[5] S. Graupner, V. Kotov, and H. Trinks. A Frame-
work for Analyzing and Organizing Complex Sys-
tems. In Engineering of Complex Computer Sys-
tems, pages 155–165. IEEE, 2001.

[6] Gregor Kiczales and Erik Hilsdale and Jim
Hugunin and Mik Kersten and Jeffrey Palm and
William G. Griswold. An overview of AspectJ.
In ECOOP, 2001.

[7] M. Imai, T. Kanda, T. Ono, H. Ishiguro, and
K. Mase. Robot Mediated Round Table: Anal-
ysis of the Effect of Robot’s Gaze. In Proc of
The 11th International Workshop on Robot and
Human Communication (RO-MAN), pages 411–
416. IEEE, September 2002.

[8] T. Kanda. A Constructive Approach for Commu-
nication Robots. PhD thesis, Kyoto University,
2003.

[9] B. J. Kuipers and Y.-T. Byun. A Robust, Qual-
itative Approach to a Spatial Learning Mobile
Robot. SPIE Sensor Fusion : Spatial Reasoning
and Scene Interpretation, 1003:366–375, 1988.

[10] M. J. Mataric. Integration of Representa-
tion Into Goal-Driven Behavior-Based Robots.
IEEE Transaction on Robotics and Automation,
8(3):304–312, 1992.

[11] T. Matsui, H. Asoh, J. Fry, Y. Motomura,
F. Asano, T. Kurita, I. Hara, and N. Otsu. In-
tegrated Natural Spoken Dialoge System of Jijo-
2 Mobile Robot for Office Services. In Proc. of
The 16th National Conference on Artificial Intel-
ligence (AAAI-99), Florida, July 1999.

[12] M. Mizukawa, H. Matsuka, T. Koyama,
T. Inukai, A. Noda, H. Tezuka, Y. Noguchi, and
N. Otera. ORiN: Open Robot interface for the
Network, The Standard Network Interface for In-
dustrial Robots and its Applications. In Proc.
of International Symposium on Robotics (ISR),
2002.

[13] R. R. Murphy. Introduction to AI Robotics. MIT
Press, November 2000.

[14] A. C. Shaw. Real-Time Systems and Software.
John Wiley & Sons Inc, 2001.

[15] H. Tani, Y. Matsumoto, and T. Ogasawara.
Indoor Navigation Based on Ceiling Images -
Automatic Mosaic Method for Building Ceiling
Maps-. In Proc. The 19th Annual Conference of
the Robotics Society of Japan, pages 1013–1014,
2001.

[16] the AspectJ Team. The AspectJTM Programming
Guide. Zerox Corporation., 2002.

[17] S. Thrun, M. Bennewitz, W. Burgard, A. B. Cre-
mers, F. Dellaert, D. Fox, D. Hahnel, C. Rosen-
berg, N. Roy, J. Schulte, and D. Schulz. NIN-
ERVA: A Second-Generation Museum Tour-
Guide Robot. In Proc. of the International Con-
ference on Robotics and Automation (ICRA),
pages 1999–2005. IEEE, 1999.

