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SUMMARY Student contradictions are the essentials of con-
cepts and knowledge acquisition processes of a student, in the
course of tutoring. This paper presents a new perspective to
represent student contradictions and a student modeling archi-
tecture to capture them. The formulation of a student modeling
mechanism enables flexible decision making by using informa-
tion obtained from students. A nonmonotonic and inductive
student model inference system HSMIS has been developed and
formulated to cope with modeling contradictions, which basi-
cally embodies advanced representation power, sufficiently high
adaptability and generality. The HSMIS is evaluated and com-
pared with other representative systems in order to demonstrate
its effectiveness.
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1. Introduction

A student who is in the fixing stage* of the acquired
knowledge often shows contradictory behaviors. This
means a student is apt to unstably apply problem solv-
ing methods, because he** has not built them or since
he has not completed the formulation of related con-
cepts, etc. It is clear that he shows such nonmonotonic
learning processes in fixing his knowledge in the pro-
cess of acquiring correct and stable knowledge. There
are other types of contradictions to be considered in de-
signing a student modeling system. A modeling system
often gets an answer from him which is consistent with
his current belief but inconsistent with his past answers,
because he changes his mind nonmonotonically as his
learning proceeds.

Contradictions which a modeling system should
cope with are classified into the following two types:

1. modeling contradictions which should be resolved
by revising student model, and

2. student contradictions which should be regarded to
be inherent in the students and be utilized for edu-
cation.

The former problem is the essential for modeling
processes, because a practical ITS should follow a stu-
dent’s nonmonotonic change. Major requirements for
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a method dealing with modeling contradictions are as
follows:

e revise current student model to enhance its accu-
racy,

o follow a student’s change in understanding,
e ignore his slips, and
e control the load of both him and the system.

To this end, a student modeling system should always
make belief revisions to keep data for inference consis-
tent. Surprisingly, only Huang et al [8] have tackled
this problem, except that Woolf et a/ [21] pointed out
the significance. The authors have been tackling this is-
sue and developing an inductive student model inference
algorithm HSMIS [16],[17]. The HSMIS employs the
ATMS [4] to maintain consistency of the student mod-
eling process. In addition, sophisticated mechanisms
to adaptively control the focus of modeling and the re-
liance on the student are incorporated into HSMIS to
meet the last requirement. It enables the HSMIS to ask
him questions appropriate in the sense of tutoring.

The second problem, to capture student contra-
dictions, seems more important from educational view-
points. The Socratic method, for example, is a
contradiction-based tutoring strategy which teachers es-
pecially use to help students in the fixing stage. It is
a well-known and already verified method that gives
such a student a strong impression that he misapplied
his knowledge. Although building high-fidelity student
models is an intractable problem [18], an ITS should
have a student model which is precise enough to handle
tutoring strategies integrated into the ITS [6]. In or-
der to generate sophisticated tutoring behavior like the
Socratic method, student modeling methods should be
able to cover student contradictions. His knowledge ac-
quisition and fixing processes should be captured by
modeling him as he is, even if he has contradictory
knowledge [11].

This paper presents a new methodology for han-
dling student contradictions in conjunction with the

*“Fixing stage” means an intermediate learning stage
where acquired knowledge is not completely established
yet.
**For simplicity “she” is used to refer to the teacher and
“he” to refer to the student in general.
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Question 1
A sphere has passed through the origin with velocity| |A

idirection and the magnitude of the applied force.
Student’s answer

. v—vg __ 0-19.6 __ 2
o= f=t = 255 = 9.8m/s

St = So+vot+Lat? =0+419.6x1+=28x12 _ 147
‘The position is 14.7m from the origin.

F =ma=2*—-98 = —19.6kg-m/s?

It receives 19.6 kg-m/s? of force to the left.

Question 2

19.6m/s to the right at t = 0s. It continues linear| [passed through the origin with||wards with initial velocity 19.6m/s|
d uniformly accelerated motion along z-axis of a|[velocity 19.6m/s to the right at|jat t=0s. It reaches at the maximum
horizontal plane, and stopped at t = 28. It mass =||t = Os along z-axis of a hori-| (hight at t=2s. Determine the direc-
2kg. Get its position at ¢ = 1s. Determine both the|[zontal plane. P is moving with||tion of the applied force at t=1s.
linear motion with its velocity| |Student’s answer
idecreasing at a uniformed rate.|v; = R Lkl +vy = 1%6"0 * 1+ Of
It stopped at t = 2s.
mine its position at t = 1s.
Student’s answer
St = So+ vt =0+19.6*1 =liforce at t = Is.
19.6 The position is 19.6m.

Question 3
sphere has{[An sphere is thrown directly up-

Tt/—To -0
= 9.8m/s
It is still moving upward at t = 1s.

Therefore, it is still receiving upward

Deter-

Fig. 1

Socratic tutoring. There seems to be some dilemma be-
tween a method to capture student contradictions as they
are and one to resolve modeling contradictions. The
authors successfully integrated the two methods by in-
troducing a multi-world mechanism into the HSMIS ar-
chitecture. In the reformulated HSMIS, the ATMS plays
another important role of managing multiple worlds
which model students with contradictions.

2. What is Student Contradiction?

Assume that a student is in the stage of acquiring a cer-
tain new concept and that he has not fully discriminated
it from other related concepts he has already acquired.
Such a student is apt to behave unstably in applying
knowledge to solve problems which contain the undif-
ferentiated concept. Figure | indicates the behavior of
a student who has not yet differentiated concepts, those
are the concept of “uniform motion” and the concept
of “uniformly accelerated motion.” He correctly calcu-
lated the position of P in Question 1, which specifies the
type of motion as “linear and uniformly accelerated mo-
tion.” In Question 2, however, he mistook a uniformly
accelerated motion for a uniform motion, and so ap-
plied problem solving knowledge for uniform motion.
Such a situation occurs due to his confusion between the
two concepts. As a result, his problem solving ability
becomes unstable.

A student can choose certain problem solving
methods appropriate for the problem given, if he has
well-discriminated concepts and has adequate knowl-
edge of their attributes. If he has not, however, he
might misapply a procedure which belongs to another
world by taking no notice of particular attributes of
the problem. For instance, methods to “calculate the
position of a moving object” are associated with both
concepts, such as uniformly accelerated linear motion
(S¢ = So + vot + at? or S; = Sy + (vo + v¢) * t/2) and
uniform motion (S¢ = Sg+vt). In solving Question 2 in
Fig. 1, he retrieves the method defined in the concept of
uniform motion, while he should apply the method de-

Examples of behavior of a student who has undifferentiated concepts.

fined in the concept of linear and uniformly accelerated
motion.

A more interesting example of student contradic-
tion is found in Question 3 in Fig. 1. The student who
had correctly calculated the force that the sphere re-
ceives in Question 1, but could not determine the cor-
rect direction of the force to Question 3 in spite of that
the two motions are physically identical except for the
direction of the motion.

Such conflicts among his answers suggests the
“multi-world reasoning” assumption that he partitions
his whole storage and reasoning space into many ones.
Each small partition in his reasoning space with rel-
evant storage is called a “world.” He stores problem
solving methods and rules which he can handle at once
in each world. He can retrieve and utilize these meth-
ods in a certain world, only when he makes inference
in the world. A contradiction can be found when he
utilized two different worlds in solving problems. One
is the world of well-formalized physics for Question 1
in which he stores the knowledge learned through the
curriculum of physics, e.g., formulas, definitions, and
another is his naive physical world for Question 3 which
he has been deeply engraved on his memory since his
childhood, for instance. He has a “motion implies a
force” misconception [3] in the naive one in this case.
It is inconsistent with the knowledge for “uniformly ac-
celerated motion” in the well-formalized one. He has
answered that the force is directed upward because he
used the naively misconceptualized world.

“Student contradictions” are defined in this paper
as his status which causes behaviors which can be re-
garded as a contradiction viewed from the stand point
of an observer. Typical interpretation of contradiction
is as follows:

e He places more than two series of problem solv-
ing methods, which is originally placed in different
worlds of concepts, in the same world regardless of
their attributes. This is caused by his failure in
differentiating them from each other.
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e He answers different truth values to a certain fact
within a limited time, since his knowledge is un-
stable.

3. Contradictions in Student Modeling

This section discusses contradictions in student model-
ing process by clarifying human concept discrimination
structures and problem solving method retrieval in re-
spective reasoning worlds.

A student’s answer to a question is represented by
a pair of a fact and its truth value, and is called an or-
acle. The set of oracles acquired by the observation of
student’s behavior within a certain period of time tends
to be inconsistent for several reasons. Such student’s in-
consistent behavior is classified into the following three
types of contradictions:

(1) Oracle contradictions caused by change of student’s
mind: Student’s learning process is essentially at-
tained with change of his mind. The consistency
of his answers can be easily lost, because he be-
haves based on his current knowledge independent
of his previous knowledge.

(2) Oracle contradictions caused by slips: A student of-
ten makes careless mistakes. Oracles based on
them are inconsistent with his actual knowledge,
hence, the set of oracles that contains slips is in-
consistent.

(3) Student contradictions: A student sometimes has
inconsistent knowledge in his head which also
causes contradictory oracles.

In cases of type (1) and (2), a modeling system is able to
construct a consistent student model that represents the
current student knowledge by revising the set of oracles
appropriately to resolve the contradictions, since we can
assume student knowledge is consistent on each period
in this case. In cases of type (3) of contradictions, how-
ever, Student’s knowledge itself is inconsistent. There-
fore, any models, that are represented and applied in a
single reasoning space, can not completely capture his
status. A multi-world formalization of a student model
should be introduced to cope with this problem.

It can be explained that human beings partition
their whole storage and reasoning space into multiple
“worlds” and organize a kind of structure to retrieve
their knowledge efficiently and with less load by

1. retrieving which world (concept) the given problem
belongs to along a certain discriminating structure
at first, and

2. retrieving a method that contributes to problem
solving in the discovered world,

as mentioned in Sect.2. The first element, i.e., deci-
sion of the target world, can be regarded as a search on

discrimination
level reasoning

method level reasoning

Fig. 2 Concept discrimination tree.

a concept discrimination tree from its root, a node of
which corresponds to a concept. The given problem is
articulated into a vector of primitive attributes, which
decides the conceptual world the problem belongs to
by seeking on the concept discrimination tree. To go
forward through a path from one conceptual node to
another requires to satisfy some conditions which char-
acterize the destined node as conditions Cy,Cy and C,
in Fig.2. For instance, the node “linear motion” has
children nodes “uniform motion” and “uniformly accel-
erated motion.” A motion which belongs to the node
“linear motion” also belongs to the node “uniform mo-
tion”, if the motion satisfies discrimination conditions
“the velocity is fixed” or “the acceleration is zero,” etc.
Problem solving methods which conventional modeling
systems have handled is retrieved in the decided world
and executed.

Student contradictions are closely related to such
concept discrimination structures and reasoning mech-
anisms as mentioned above, therefore, they can be well
formulated by the “multi-world reasoning” assumption.
The status of a student who has not yet discriminated
two concepts, for instance “uniform motion” and “uni-
formly accelerated motion”, can be captured as not hav-
ing built such discrimination conditions. The lack of
discrimination conditions easily causes student’s confu-
sion of concepts as lack of C; and Cs causes his con-
fusion of methods in Fig.3. Such a student is apt to
unstably misapply methods which should belong to a
different concept from the expected one. He conversely
slips up to seek the naive world in the case of Question
3.

Student contradictions are caused by erroneous
concept discrimination trees, because a student who has
such erroneous tree cannot manage consistency in re-
trieving problem solving methods as mentioned above.



42

discrimination

level reasoning

method level
reasoning
P S
5
7 <o,

Fig. 3  Concept discrimination tree of a student who has un-
differentiations.

Such kind of contradictions can be represented by the
overlay of discrimination conditions.

Student modeling process is essentially hypotheti-
cal, hence, the completeness of inferred student model
is not always guaranteed. The expectation of student’s
answer deduced from the current student model is often
different from newly obtained oracles, when the cur-
rent model does not completely represent his current
status. Assumptions, which were assumed when the
current model was inferred, become inconsistent with
the set of oracles. Such a type of contradictions is
called “assumption contradiction in modeling.” They
are able to be formulated in a similar way of types (1)
and (2) of contradictions, because all of them should
be resolved to represent consistent knowledge inside a
single world. To resolve such contradictions requires
a nonmonotonic process which is essential to student
modeling processes, i.e., to assume the student’s knowl-
edge which satisfies the given set of oracles, and to revise
the current model going together with changes of ora-
cles, etc. “Modeling contradiction” is a general term
of such three types of contradictions which occurs in a
single world. We can design a student modeling archi-
tecture that is able to maintain the consistency between
the student model and the student behavior by defining
methodologies to resolve them. The SMDS, subsystem
of the HSMIS, is able to algorithmically backtrack the
contradiction in the student model and oracles. The
HSMIS has inherently the capability to adaptively re-
vise the current model in cases of assumption contra-
dictions. Furthermore, the HSMIS can cope with con-
tradictions (1) and (2) by nonmonotonically revising
the assumptions of the ATMS, which are roots of all
its modeling processes. Such a mechanism to deal with
modeling contradictions is described in Sect. 4.

It is difficult for not only modeling systems but also
human teachers to distinguish and detect the four types
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of contradictions, i.e., type (1), (2), (3) and assumption
contradictions in modeling, because all of their indica-
tions are very similar. They are triggered by a difference
between the expectation of student answer deduced from
the current student model and his actual answer. One of
the research goals of this paper is to produce a generic
and formalized modeling mechanism which is able to
cope with these kinds of contradictions. Although a
generic methodology to distinguish them is not fully
developed, some heuristics are employed as shown be-
low.

Assume that the reliability of each given oracle or
each clause in the student model can be available. Both
modeling contradictions and student contradictions are
detectable by quite similar triggers, i.e., the expectation
from the model and the actual oracles. Contradiction
resolving procedures of those contradictions are quite
different from each other. Modeling contradictions re-
quire to be resolved by revising the set of oracles or
current model in general. Contradiction resolution pro-
cedure for each type of modeling contradiction is a bit
different, and hence detection processes of them are dif-
ferent from each other. In the heuristics, student con-
tradictions are first distinguished from modeling con-
tradictions.

Student contradictions should not be resolved, be-
cause student’s inconsistencies should be modeled as he
is. Student contradictions require to revise neither ora-
cle set nor clauses that are inconsistent with oracles, but
to revise discrimination structure to permit to contain
the inconsistency in it. Such a difference in treatment
of student contradictions and modeling contradictions
suggests the following way of discriminating them. If
either the reliability of a clause which is inconsistent
with valid oracles or that of the oracles is less than a
certain threshold, the inconsistency should be consid-
ered to be a modeling contradiction and hence should
be resolved. On the other hand, if both of the reliabil-
ities are high enough, the inconsistency is considered
to be a student contradiction. They are not revised but
put into some worlds, i.e., all the reliable data can be
alive in the multi-world formalization. The following
heuristics to detect contradictions of each sub category
in modeling contradictions are incorporated.

The change of student’s knowledge which causes
type (1) of modeling contradictions occurs especially
right after his errors are corrected. He then generally
changes his understanding from erroneous status to cor-
rect one. It is appropriate to apply revision procedures
for type (1), when correct oracles are obtained right af-
ter tutoring, i.e., the system resolves the contradiction
by excluding the past oracles inconsistent with correct
clauses, or by asking him truth values of the oracles.
The revision of oracles results in the revision of the
model, i.e., erroneous clauses are dismissed and correct
clauses are appended. In addition, it is available to
directly ask him if he has changed his knowledge.
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Independently of the correctness, generally speak-
ing, the student ought to have consistently applied the
clauses that are inconsistent with newly obtained or-
acles throughout a certain period, in the case that he
makes careless mistakes which cause type (2) of model-
ing contradictions. Thus such type of contradictions are
detected in similar criteria as those for student contra-
dictions, i.e., the inconsistent oracles and clauses would
be both reliable enough. There are two ways to dis-
tinguish them; one is to consider a situation as a type
(2) only when the situation could not be treated as a
student contradiction, and another is to ask him a very
similar question to get a confirmation.

These contradictions can be more sufficiently dis-
tinguished by introducing and enriching domain depen-
dent heuristics, e.g., “Students tend to mistake a uni-
formly accelerated motion for a uniformed motion if
the motion is vertical,” in addition to the domain inde-
pendent heuristics explained above.

4. Nonmonotonic Student Modeling

4.1 SMIS: Inductive Inference Engine

A student model description language is required to
be able to represent the teacher’s understanding of the
student’s knowledge. From this viewpoint, the language
should take four truth values for a statement, those are,
true, false, unknown and fail. The SMDL, which is an
extended version of Prolog, is designed to treat these
truth values.

Student modeling is essentially an inductive infer-
ence. The SMIS, an inductive inference engine that the
authors have developed based on MIS [20], describes
student’s knowledge as an SMDL program from a set of
oracles. An oracle symbolizes a student’s answer which
takes the form of a fact and its truth value. SMIS applies
the following procedure repeatedly to the model:

(1) If there is a difference between an oracle and the
fact derived from a student model, activate the student
model diagnosis system, SMDS, to identify the cause of
the difference.

(2) According to the diagnosis, SMIS selects an ap-
propriate operation, either removal of an inappropriate
clause or addition of a new clause.

Generality of the student modeling method with SMIS is
sufficiently high, because it can construct models which
can be described in terms of SMDL. Further details are
described in[10] and [12].

4.2 Control of Model Building Process

A student modeling system should embody a teacher’s
educational insights. Requirements to the architecture

of the modeling system from educational viewpoints are
in the following:
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1. To follow a student’s change in understanding, and

2. to ask questions with regard to their appropriate-
ness in the sense of tutoring.

The SMIS automatically asks questions that con-
tribute to disambiguation of alternative model selection.
When the teacher is confident that she has a good grasp
of her student’s knowledge, she asks him fewer questions
on his behavior as long as it supports her confidence.
The model inference procedure should ask questions
with regard to their appropriateness in the sense of tu-
toring.

These two problems mentioned above suggest that
the inference procedure should cope with nonmono-
tonic modeling processes. In an HSMIS, an ATMS is
employed for this purpose. The HSMIS consists of the
SMIS, the ATMS, the Virtual oracle generator and the
CRS. The main task of the ATMS is to manage the con-
sistency of a set of assumptions (environment) used by
the problem solver, the SMIS in our case. The SMIS
informs the ATMS of all the reasoning processes. The
control mechanism of student modeling is newly formu-
lated, in order to make the quality and quantity of ques-

tions reasonable in the sense of tutoring. In this formu-
lation, the following three types of nonmonotonicities,
with which a modeling system should cope, are listed:

(1) student nonmonotonicity,
above,

which is explained

(2) topic nonmonotonicity which is related to both
topics for model diagnosis and questions, and

(3) reliance nonmonotonicity which is related to the
reliance on a student’s knowledge.

Oracles are justified by three kinds of assumptions such
as (1)student, (2)consider and (3)trust in order. The sta-
tus of each oracle is controlled from viewpoints of these
nonmonotonicities. Further details of the formulation
are given in[12] and [10].

An example of a modeling conversation and stu-
dent model constructed by the HSMIS is indicated in
Fig. 4. This geographic domain is selected, because it
can notably demonstrate the efficiency of the control
mechanism. In the conversation (a), the system obtains
an oracle grow(rice,osaka): :true. Since the oracle
is correct, the HSMIS trusts that the student has cor-
rect knowledge about the growth of plants, which cor-
responds to the clause (1). Therefore, the system makes
virtual oracles, which are correct facts

suitable temperature(rice,osaka) :: true,

suitable soil(rice,osaka) :: true,

suitable_lay(rice, osaka) :: true,and
has_irrigation(osaka) :: true,

to induce the correct clause (1) without making ques-
tions on them.
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(a) Does rice grow in Osaka ?
>> Yes.[Yes]
(1)
(b) Does rice grow in Kiev ?
>> Yes.[No]
(2)
(c) Does rice grow in Mongolia ?
>> Yes.[No]
(d) Is the temperature of Mongolia suitable for rice ?
>> Yes.[Yes]
(e) Is the soil of Mongolia suitable for rice ?
>> Yes.[Yes]
(2) Is the lay of Mongolia suitable for rice ?
>> Yes.[Yes]
(g) Does Mongolia have an irrigation ?
>> No.[No]
(3)
(h) Is the temperature of Kiev suitable for rice ?

(Student’s answers are underlined. Right ones are in [].)
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(1)
grow(Plant,Place) :: —
suitable_temperature(Plant,Place),
suitable_soil(Plant,Place),
suitable_lay(Plant,Place),
has_irrigation(Place).

(2)
grow(Plant,Place) :: —
suitable_soil(Plant,Place),
suitable_lay(Plant,Place),
has_irrigation(Place).

(3)
grow(Plant,Place) :: —
suitable_soil(Plant,Place),
suitable_lay(Plant,Place),
has_irrigation(Place).

(Model at each scene of conversation.)

Fig. 4 An example of modeling conversation and model at each scene of it.

In the conversation (b), the student gives a wrong
answer to the system’s question. As the corre-
sponding oracle can be explained by correct facts
on Kiev and the prepared clause (2), which implies
that the student lacks the originally needed condi-
tion suitable_temperature(Plant,Place), the system
makes virtual oracles on Kiev to derive the clause as
in the previous conversation. Virtual oracles on Os-
aka continue to exist and support the clause (2). In the
conversation below (c), the system fails to explain the
wrong oracle grow(rice,mongolia) :: true by any of
the plausible clauses which are prepared in advance.
Therefore, the system must obtain “real” oracles on
Mongolia. Moreover, virtual oracles on Kiev and Os-
aka are dismissed, because he betrays the system’s trust
in clause (2). The system makes questions on Kiev to
get “real” oracles but does not make questions on Os-
aka, because the system avoids touching the old sub-
ject of Osaka by changing the status of assumption
consider(Osaka).

5. Student Contradiction
5.1 Formulation of Student Problem Solving

Student problem solving which includes the latter two
phases mentioned in Sect.2 can be represented us-
ing a logic-based language such as Prolog. Predicate
solve (G, Xy, Xout) denotes problem solving knowl-
edge. G denotes the goal of the problem, that is, what
should be determined under what constraints. Xj, is
a vector of input variables which are instantiated and
Xout 18 a vector of output variables which are not in-
stantiated when the predicate is called. {Xi,, Xout} rep-
resents whole articulation of the problem space. For
instance, the problem space “motion” is represented as

{ma (S(t)a AS)’ (U(t)a Av)» (a(t), Aa), (f(t)a Af)’ [(TDv So,
Vo, a0, Fo),- -]}, where the elements are the mass
of the moving object, displacement, velocity, ac-
celeration and applied force as functions of time
erasped, and sets of the elements of the motion, re-
spectively.  Each function of time erasped is de-
noted as a couple of the function itself and the at-
tribute of the function. The problem space, which
is adopted in Question 1 in Fig. 1, is represented as
{m, (1)), (v(2)), (a(t), fized), (£(£)), [(2, So, (0,0),a,
Fy), (0,(0,0),(19.6,0),a1,F1)]}. When the problem
solving begins, input variables are given in the formula
of instantiated variables. For instance, the displacement
and the velocity on t = 0 are instantiated as (0,0) and
(19.6,0), because they are given in the problem. Prob-
lem solving is a retrieval and an execution of meth-
ods described in the problem solving knowledge base,
and to get the output parameters list { Xy } instantiated
from the given input parameters list {Xip}.

A problem solving knowledge consists of the esti-
mating part and the procedural part, and is represented
by the following formula:

solve (G, Xm,f(om) - _
predicates_for_estimationSXin) ,

procedural bodies (G, Xin, Xout) -

The estimating part specifies relevant domain of the
knowledge, and the procedural part describes the
method used to get to the goal. Predicates for esti-
mation are called “world predicates,” which correspond
to discrimination conditions on a concept discrimina-
tion tree. Conventional bugs are defined as wrong
predicates, lack of predicates and additional predi-
cates from the correct problem solving knowledge in
the procedural part. An undifferentiation of concept
can be modeled as a lack of world predicate condi-
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solve(get_position_of moving_object(T+,S1), M,Sy, Vi, A Fy, [(Te,S0,Vo,A0,F0),(T1,51,V1,As,F1)]) -

solve_in_formulated_physics ({Xn}),
uniformly_accelerated_motion ({Xin}),

get_position_of_moving_object ([Ad, {Xin}, {Xou} ).
get__position_of_moving_object ([Ad, {Xin}, {Xout}) :-

get_acceleration ([Ad, {Xin}, {Xou}),

subtract (T,To,T), multiply{Ve,TVY, squere (T,TT), multiply (Ao, TT,ATT), add (S VT,ATT,S1).

solve_in_natve_world (Xin)

direction(F)

= direction(V) —world (Xin)

Si=So+ Vot+al2
F=ma

St=Sﬂ+Vo’
F=0
(a)

Fig. 5

tions. Lack of a world predicate extends the cover-

age of concept, so that the knowledge, which should
be inapplicable outside a certain concept, becomes in-
correctly applicable in other concepts. As a result,
both the original problem solving knowledge and the
knowledge with wrong predicates for estimation are ap-
plicable in some different concepts. The knowledge
which he actually applies changes according to cir-
cumstances in such cases. Therefore, the status of the
knowledge applications can be observed to be unstable.
Teachers recognize these circumstances as contradiction.
The correct problem solving knowledge to determine
the position of P in Fig.1 is described as clauses in
Fig.5. Conditions solve_in_formulated _physics and
uniformly_accelerated_motion are world predicates,
and the last predicate in the body of the former clause
belong to the procedural part, which calls the problem
solving method, i.e., the latter clause. A student who
has not completely formed the concept of “uniformly
accelerated motion” lacks the latter world predicate as
depicted in Fig. 5 (a), so that he can apply the knowl-
edge even in the case of uniform motions. Thus he
unstably chooses the correct method for calculating the
position or the incorrect one, because of the lack of the
world predicate having no definite view of his own.

5.2 Modeling Student Contradictions

The formulation of student contradictions described in
Sect. 5.1 works well as a student modeling method by

solve_in_formulated

direction(F)
= direction(V)

ted

uniformly_accelerated

uniform_

P motion (Xin)

Fa¥

Si=So+ Vit +af
F=ma

(b)

Interpretation of the student contradiction.

utilizing the heuristics in Sect.3. A Multi-World Con-
troller is incorporated into HSMIS to control multi-
world reasoning. Concept discrimination trees are given
in advance as a part of domain knowledge, and model
diagnosis and revisions are driven on the structure of
these trees. Each world corresponds to an ATMS envi-
ronment in the integrated HSMIS. Clauses for problem
solving are induced in each world from oracles belong-
ing to the world. The Multi-World Controller manages
the set of worlds, each of which is a certain ATMS envi-
ronment. The ATMS makes the rounds of such worlds
and SMIS induces the clause level student model of the
world. When a modeling contradiction is detected and
is resolved in a certain world, the corresponding ele-
ments of the set of environments are revised. Each clause
level student model can be consistently inferred using
such a mechanism.

The construction process of the student model that
represents student contradictions is as follows:

1. The system assumes a student contradiction, when
it turns out that a reliable clause has to be deleted
to explain new oracles.

2. The system tests whether the oracles are satisfied by
the clauses that exist in another world by using the
world in order of similarity to the correct world on
the structure of the tree.

3. When a satisfiable world is found, discrimination
conditions that contributes to differentiation of the
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two worlds are marked as neglected as depicted in
Fig. 5.

4. If any satisfiable worlds are not found, the system
considers the situation as a modeling contradiction
and tries to revise the model in the correct world.

Iy, a set of instances each of which should origi-
nally belongs to a certain conceptual world W, can be
declared by applying Cy which is the world predicate
of W to I, the whole set of instances in the domain.
Method level representations and oracles which justify
the model are generated and stored in each world indi-
vidually. Suppose that there are two worlds W; and W,
which are brothers and that they have aiready obtained
and involved oracle sets Oy, and Oya. Methods M,
and M have been staying in W, and Wa, respectively.
If M;, that currently has high CF value, is denied by
the oracle set Op, which is newly obtained from him,
to the problem that naturally belongs to W, then the
system hesitates to dismiss M; and tries to interpret the
status of his conceptual _discrimination as undifferen-
tiated. If My satisfies O,, O, is moved into W5 and
supports M, there. Discriminal conditions C; and Cs,
which are world predicates of W; and W, are marked
as neglected. If any methods in any other worlds in the
tree except the “another world” do not support O,, it is
assumed that he was thinking in the world that contains
naive buggy knowledge and has solved the problem un-
formulatedly. O, is moved into the “another world”
which is prepared to cover his unformulated probiem
solving, if one of the buggy clauses, prepared in the
world in advance, satisfies O,,.

In our example, the student correctly answered
Question 1 in the past, so that the student model had
the correct clause to get the force which an object in
uniformly accelerated motion receives. He made the
wrong answer utilizing his naive physical world to
Question 3 later. The HSMIS receives oracles made
from his answer, e.g., oracle(subtract(19.6,0,19.6),true),
oracle(subtract(2,0,2),true). The above clause in the stu-
dent model does not satisfy these oracles and derives
an answer different from that of him, so that HSMIS
engages in generating another clause whose head is
solve(get_direction_of force(---), ---). It is inappro-
priate to dismiss the existing clause from the student

Tutor: Solve this problem. (Give Question 1 again)

The student correctly answers.
Tutor:
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model, however. The clause is reliable enough and it is
hard to interpret his behavior as lacking in it, because
previously he was able to apply it to obtain a correct
answer.

In such cases, the HSMIS dares to interpret his con-
cepts as undifferentiated, attempting to make a student
model which implies the student contradiction. To this
end, the HSMIS at first infers the method that the stu-
dent applied from the above oracles in a data driven way
as usual: subtract(V,y, Vy,DV), subtract(T,, T, DT),
divide(DV,DT,AV) and direction(AV,Ds), in order.
Next, it searches a world which has already contained
the method. If the search fails, model inference is car-
ried out in the “another world.” The HSMIS searches
the existing clause in the world which satisfies his erro-
neous answer. The system finds out the clause which
represents his erroneous “motion implies force” mis-
conception, so that it marks discrimination conditions
that can naturally partitions the concept of motion into
the world of formulated physics and the world of naive
physics as neglected. It can explain his discrimination
status, that he unstably applies physical formulas and
naive methods.

5.3 Correcting Student Contradictions

To help the student build naive physical world in his
brain is one of the essential goals of tutoring, especially
for helping his conceptualization. This suggests a very
effective tutoring behavior as follows:

1. Give him a problem such that he tries to solve in
his naive one and fails to get a correct solution.

2. Remind him of the correct answer to the problem
he obtained in Question 1.

3. Point out the inconsistency between the two results.

4. Explain the causes and guide him to build a correct
concept.

In this way, he can correctly identify attributes necessary
for building the concept, which we call world predi-
cates, and establish relationships between them, thus he
can appropriately conceptualize the knowledge in both
worlds.

You answered in Question 3 that the direction of the force vhich the sphere receives is upward at
t=1s, because it is still moving upwards then.

If that was correct, why didn’t you say that the

sphere in Question 1 receives force to the right?
Student:Because it was moving upwards, so it is hardly possible that it continued receiving force downward.

Tutor:
of motion.

The two problems are completely the same, e.g., speed at each time, etc., except for the direction
If direction of force were to be implied from motion, you should have naturally said
that the direction of the force is to the left in Question 1, but you didn’t.

(You should have

‘‘motion implies force’’ misconception in your naive physical world. --.)

Fig. 6 An example of tutoring behavior.



KONO et al: INDUCTIVE STUDENT MODELING FOR STUDENT CONTRADICTIONS

Obtaining a student model that represents the
student contradiction, in this case the cause of
it is represented by the lack of the condition
“solve_in_naive_physics”, the system becomes able to
generate a effective tutoring dialogue as Fig. 6. His in-
correct reasoning methods, such as the use of abduction
in his problem solving, can be formalized as contradic-
tions, however, the topic has been kept for future work.

The mechanism for modeling contradictions ex-
plained in Sect. 4 and the framework to handle student
contradictions explained in the previous section are in-
tegrated into the reformulated HSMIS. It gives up con-
structing a unified consistent model and dares to build
a model in multiple spaces, when newly obtained data
denies the reliable current model. The control mech-

anism guarantees the fidelity and the accuracy of the
model in each world.

6. Discussions

Here discuss some basic issues of comparative student
modeling methodologies.

The Overlay model [2] is relatively easy to control
the modeling processes with. Since it cannot represent
the student’s incorrect knowledge, the performance of
overlay-model-based ITSs is limited. IDEBUGGY [1]
has a lot of modular chunks of buggy procedures. It has
the capability to cope with the noise problem, however,
it is not complete. Its searching strategies depend on the
assumption that each individual buggy procedure can
be extracted from a combined buggy procedure. The
burden on cataloging bugs is still left.

Both ACM [ 14] and our method HSMIS are based
on the idea that student modeling is viewed as induc-
tive learning from a set of examples. They can model
not only mal-functions but mal-structures in terms of
declared primitives. Both methods act as domain-
independent engines and their capabilities contain those
of both the overlay and buggy methods. Besides, both
of them can cope with noisy data.

The major difference is their searching and diag-
nostic strategies for ascertaining what part of the model
conflicts with the student. HSMIS can prune search
space for new clauses in a directed tree, although ACM
originally makes a blind search of all its search space.
To embody efficient searching, Langley ef al [15] have
been developing DPF (Dynamic Path Finder).

The HSMIS can incrementally revise the model fol-
lowing newly obtained data. Although the path-finding
algorithm is relatively formalized by DPF, the rule-
finding process is not formally defined. HSMIS can
distinguish between noisy data and bug migration [12},
while ACM cannot currently [15]. HSMIS asks ques-
tions which are logically required in consideration of
educational appropriateness, while ACM does not.

It can be claimed that it is significant for student
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modeling systems to handle inductive learning (infer-
ence) and nonmonotonic reasoning [16],[17]. Woolf
et al [21] also pointed out the significance recently.
Incorporation of inductive learning theories into stu-
dent modeling is discussed by Hoppe [7] and Dillen-
bourg [6], which utilize EBG and LEX, respectively.

Both systems are successful to handle their simple di-
dactic strategies.

Self [ 19] gives the characterization of student mod-
eling as a diagnostic task, making an application of
GDE [5]. The knowledge to be learned is expressed as
a system with a defined structure of components with de-
fined behavior. GDE generates hypotheses of student’s
misconceptions. Each hypothesis is represented as a set
of failed components. GDE identifies and refines the
set of hypotheses consistent with the observations thus
far. However, GDE has a fatal problem. It can express
only mal-functions.

Huang [9] proposes a logic to capture the student’s
inconsistent knowledge. Surprisingly, only his study,
except the HSMIS, has so far been made at modeling
student contradictions. Although it is well-defined in
terms of propositional calculus, it would be difficult to
extend it to deal with the first order predicate calculus.

7. Concluding Remarks

This paper has presented a student modeling methodol-
ogy and its use in an ITS. Contradictions of the student
to model students with contradictory knowledge are first
defined. The modeling system of such students has to
model undifferentiated concepts and inconsistency as
it is. A sophisticated control mechanism to deal with
modeling contradictions for the HSMIS has been devel-
oped.

Next, HSMIS has been compared with other mod-
eling systems from various viewpoints to demonstrate
it is a well-defined and generic student modeling algo-
rithm, which can build a student model of high rep-
resentation power. The HSMIS has been fully imple-
mented in Common-ESP(Extended Self-contained Pro-
log), and embedded in FITS, Framework for ITS. Two
ITSs have been built using FITS, one is on geography
and the other is on chemical reactions.
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